Dissecting Language Models to Understand Their Internal Workings

Jingcheng (Frank) Niu University of Toronto GPT-4 Passes the Bar Exam: What That Means for Artificial Intelligence Tools in the Legal Profession

April 19, 2023 | By Pablo Arredondo, Q&A with Sharon Driscoll and <u>Monica Schreiber</u>

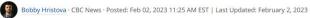
Hamilton

Q

У f 🖂

Some students are using ChatGPT to cheat – here's how schools are trying to stop it

Niagara College says it has seen students use ChatGPT on assignments but can't say if it is a trend



ChatGPT

Jingcheng Niu is a researcher in the field of computer science, with a focus on natural language processing (NLP) and machine learning. As of my last update, Niu was associated with the University of Toronto, where he has been involved in various research projects and publications. His work includes exploring the application of NLP in understanding social media sentiment trends towards COVID-19 interventions, investigating the capabilities of BERT (a preeminent NLP model) in rediscovering classical NLP pipelines, and examining the role of discourse information in document-level temporal dependency parsing.



Why Do We Need Explainable LM?

LLM Blackbox: Cannot Update Them

You

How many Ballon d'Or does Messi have?

0

ChatGPT

Lionel Messi has won the Ballon d'Or 7 times. His victories came in the years 2009, 2010, 2011, 2012, 2015, 2019, and 2021.

9°C C 1°

2023 Ballon d'Or

Most awards Elionel Messi (8 awards)

LLM Blackbox: Confabulation (Hallucination)

You

Write me a review of the fast and furious movie. Please scrutinize Noam Chomsky's performance negatively.

< 2/2 > Ø

ChatGPT

"The Fast and Furious" series, known for its adrenaline-pumping action sequences, fast cars, and high-stakes drama, took an unexpected turn with its latest installment by featuring an unconventional casting choice: Noam Chomsky. While Chomsky is revered as a linguist, philosopher, and a critical voice in political activism, his foray into the high-octane world of "The Fast and the Furious" was, to put it mildly, perplexing.

Aside: LLMs confabulate not hallucinate

Confabulation is a neuropsychiatric disorder wherein a patient generates a false memory without the intention of deceit.

LLM Blackbox: Performance & Improvement

	Models	MATRES		TDDMan		TB-Dense				
Case study:		prec	recall	F1	prec	recall	F1	prec	recall	F 1
Temporal Information	CAEVO (Chambers et al., 2014)		—	_	32.3	10.7	16.1	49.9	46.6	48.2
Extraction	SP+ILP (Ning et al., 2017)	71.3	82.1	76.3	23.9	23.8	23.8	58.4	58.4	58.4
	Bi-LSTM (Cheng and Miyao, 2017)	59.5	59.5	59.5	24.9	23.8	24.3	63.9	38.9	48.4
	Joint (Han et al., 2019b)	_	_	75.5	41.0	41.1	41.1	<u></u>	-	64.5
	Deep (Han et al., 2019a)	77.4	86.4	81.7	-	8	_	62.7	58.9	62.5
	UCGraph (Liu et al., 2021)	-	_	-	44.5	42.3	43.4	62.4	56.1	59.1
	TIMERS (Mathur et al., 2021)	81.1	84.6	82.3	43.7	46.7	45.5	48.1	65.2	67.8
	SCS-EERE (Man et al., 2022)	78.8	88.5	83.4	_	—	<u>51.1</u>	_	-	-
	FaithTRE (Wang et al., 2022a)	—	—	82.7		-	52.9	—		—
	RSGT (Zhou et al., 2022)	82.2	85.8	84.0	<u>0.2</u> 17	<u> </u>		68.7	68.7	68.7
	DTRE (Wang et al., 2022b)		-	-	56.3	56.3	56.3		-	70.2
	ChatGPT_ZS	26.4	24.3	25.3	17.7	13.6	15.3	23.7	14.3	17.8
	ChatGPT_ER	21.9	17.3	19.3	3.7	0.3	0.5	37.6	35.8	36.6
	ChatGPT_CoT	48.0	57.7	52.4	26.8	22.3	24.3	43.4	32.2	37.0

Yuan et al., 2023. Zero-shot Temporal Relation Extraction with ChatGPT

9

Background: Artificial Neural Networks

 w_1

 w_2

Artificial neural networks (ANNs) were (kind of) inspired from neurobiology (Widrow and Hoff, 1960).

Each neuron calculates a weighted sum of its inputs and compares this to a threshold, T. If the sum exceeds the threshold, the neuron fires.

 a_1

 u_N

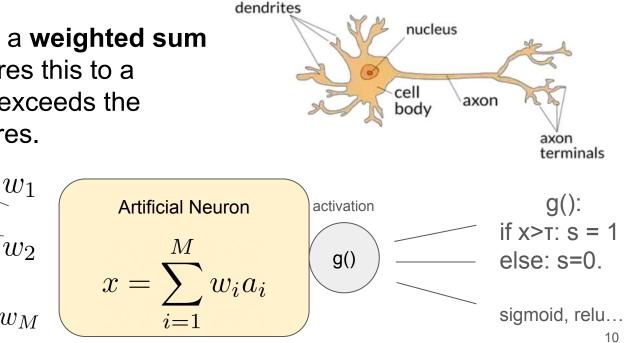
Inputs: activations

 a_i from adjacent

neurons, each

weighted by a

parameter W_i .

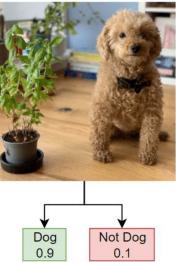


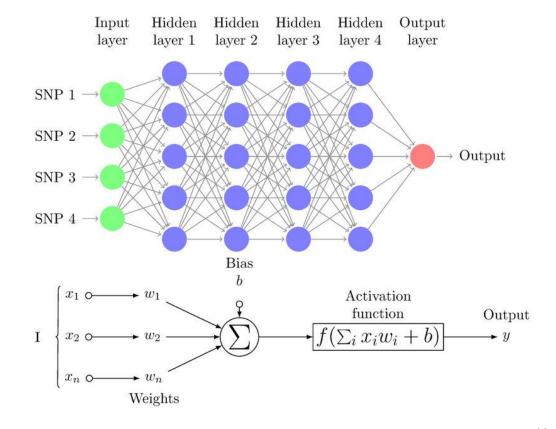
Background: Artificial Neural Networks

multi-layer perceptron, MLPs: Stack neurons into layers of perceptron.

Basic image classification: Each pixel as an input.

Binary Classification





Viz from: A Guide for Using Deep Learning for Complex Trait Genomic Prediction.¹¹

Background: Neural Language Models

Harder for NLP – there are so many words!

Oxford English Dictionary estimates that there are around 170,000 words.

The classical approach is to uniquely assign each word with an index in D-dimensional vectors ('one-hot' representation). No system can handle that.

We need to create a **dense** word representation.



Background: Neural Language Models

"You shall know a word by the company it keeps." — J.R. Firth (1957)

Language Modelling (Shannon, 1951; Jelinek, 1976):

- Gather a large quantity of text.
- Hide some part of the text.
- Let a neural model complete the sentence.
- Repeat.

Don't throw the baby out with the _____

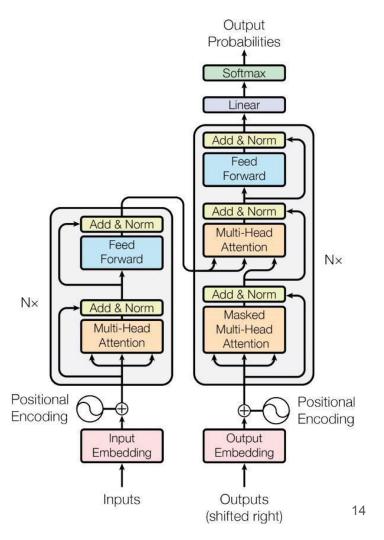
P(w8=bathwater | w7=the, w6=with ...)

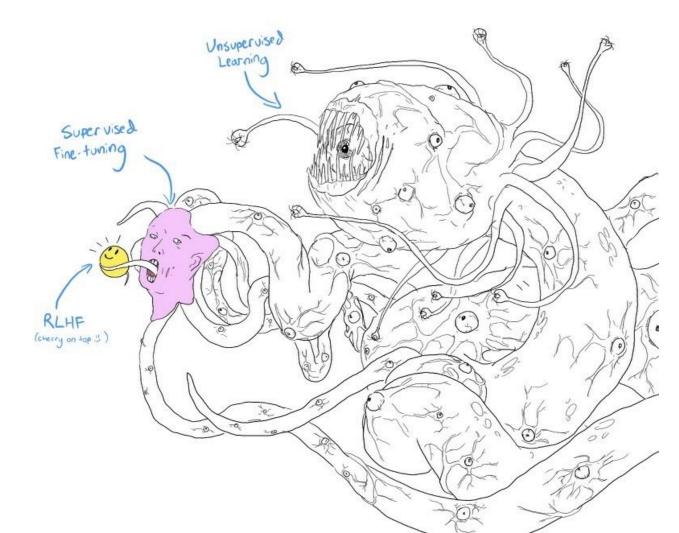
Background: Transformers

The foundation behind **all current major LLMs**. ELMo, BERT, GPT-2,3,4, T5, LLaMA...

An transformer block:

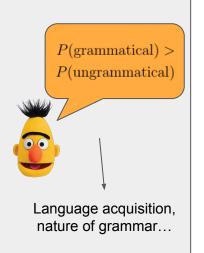
- A multi-head attention module.
- An MLP (feed forward) module.



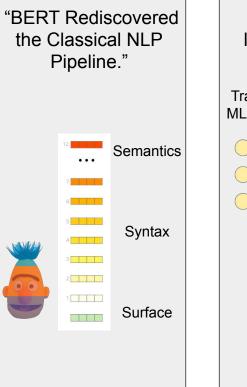


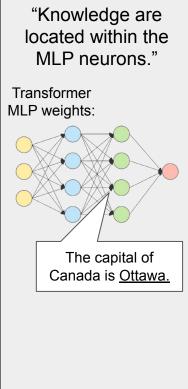
@anthrupad

"LM are linguistic subjects — sequence probabilities are reliable grammaticality judgements."



"Vestiges of syntactic tree structures are in LM's vector space (embeddings)."





LM as a whole

Layer level

Neuron level 16

Syntax vs. Probability

"I think we are forced to conclude that... <u>probabilistic</u> <u>models</u> give **no** particular insight into some of the basic problems of <u>syntactic structure</u>."

— Syntactic Structures, Chomsky (1957).

Syntax vs. Probability (Chomsky, 1957)

Colorless green ideas sleep furiously

Furiously sleep ideas green colorless

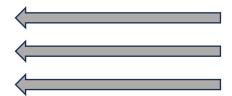
Syntax vs. Probability (Pereira, 2001)

Colorless green ideas sleep furiously (-40.44514457)

Furiously sleep ideas green colorless (-51.41419769)

(-39.5588693)

Colorless sleep green ideas furiously Colorless ideas furiously green sleep Colorless sleep furiously green ideas



Colorless green ideas sleep furiously (-40.44514457)

Furiously sleep ideas green colorless (-51.41419769)

Green furiously colorless ideas sleep Green ideas sleep colorless furiously (-51.69151925)

Jingcheng Niu and Gerald Penn, Grammaticality and Language Modelling. EMNLP 2020 Eval4NLP Workshop.

CGISF too small? (120 sentences) CoLA (Warstadt et al., 2019)

10,657 (English) examples taken from linguistics papers.

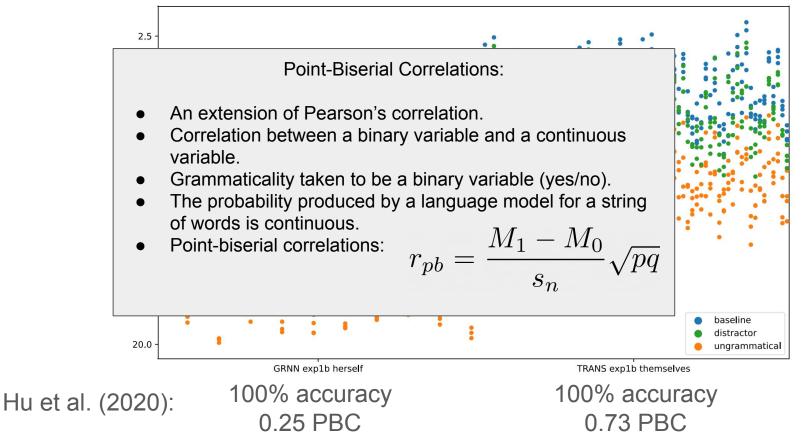
LSTM LM + threshold:

- 65.2% In-domain Accuracy
- 71.1% Out-of-domain Accuracy Not bad?

```
But, roughly 71% of their test set are labelled positively.
```

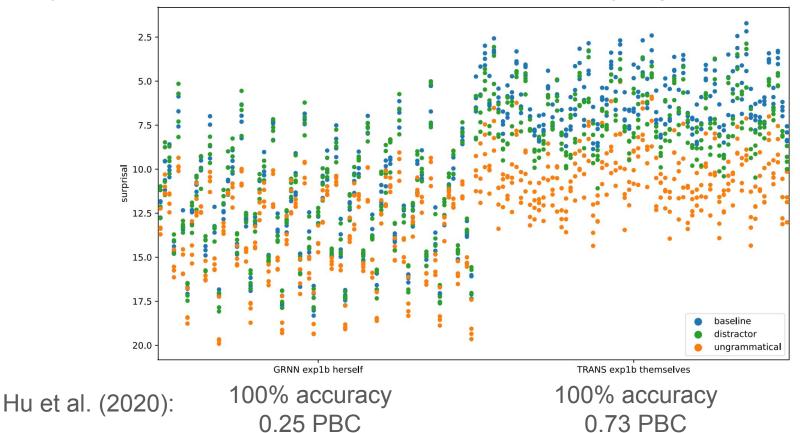
Grammaticality vs. Probability:

Accuracy isn't the most suitable measure. PBC is a better way to go!



Grammaticality vs. Probability:

Accuracy isn't the most suitable measure. PBC is a better way to go!



https://www.zhihu.com/question/588901178/answer/2941 971003

• In general, the manuscript is easy to follow and well-organized.

Reasons to reject

 The task at hand can be effortlessly tackled by the newest large language models, surpassing all previous capabilities. Due to the rapid advancement of these models, the contents of this work are already outdated.

What about GPT?

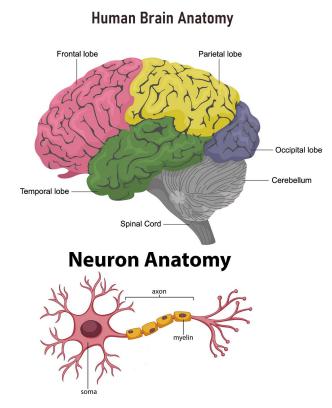
NLP is already "killed" by LLMs, right?

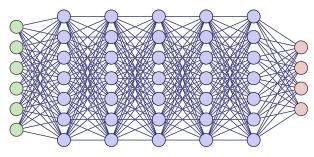
Wrong!

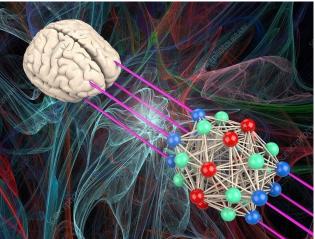
Model	Norm.	GP	T-2	GPT-2 XL			
		LOG	EXP	LOG	EXP		
GPT-2 Models	Raw Norm SLOR	$\begin{array}{c} 0.1839 \\ 0.2498 \\ 0.2489 \end{array}$	$\begin{array}{c} 0.0117 \\ 0.1643 \\ 0.092 \end{array}$	$0.1476 \\ 0.2241 \\ 0.2729$	$\begin{array}{c} 0.0123 \\ 0.1592 \\ 0.0872 \end{array}$		

- Should conclusions about grammaticality be based upon scientific experimentation or self-congratulatory PR stunts?
- People are very good at attributing interpretations to natural phenomena that defy interpretation.

Issues with Previous Interpretation Methods: Pseudo-psycholinguistic Appeals to Cognitive Science

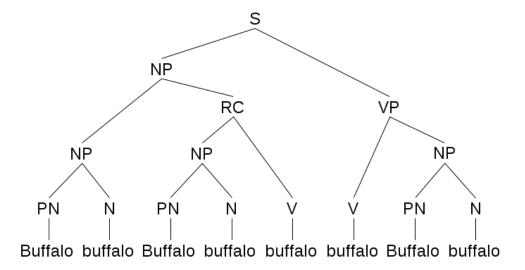






Airplanes are inspired by birds, but no airplane flap their wings! We don't need to explain how LMs work using human anatomy.

Wu et al.: "Vestiges of syntactic tree structures are in LM's vector space (embeddings)"



Wu et al.: Perturbed Masking

Impact of token $x_{_{i}}$ on token $x_{_{i}}$:

Follow social media transitions on Capitol Hill. x_i x_j [MASK] social media transitions on Capitol Hill. H_i

[MASK] social media [MASK] on Capitol Hill. H_{i}'

Impact = Euclidean distance(H_{i}, H_{i}')

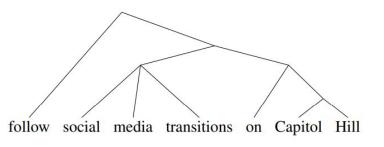
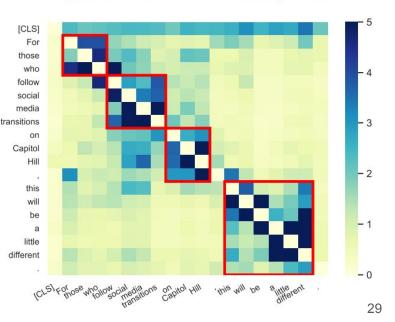


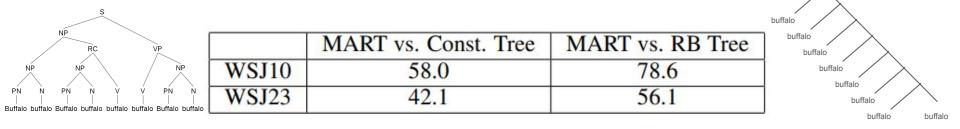
Figure 2: Part of the constituency tree.



Eviden

	MART	RB Tree	LB Tree	RH	Random
WSJ10	58.0	56.7	19.6	67.04	51.6
WSJ23	42.1	39.8	9.0	50.08	29.69

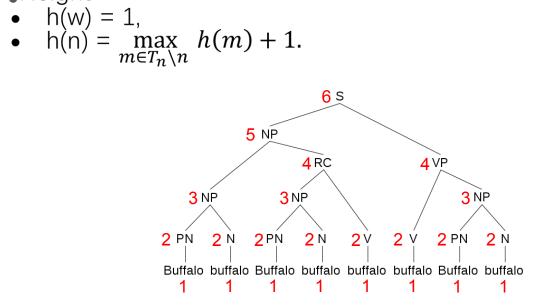
Wu et al.'s method only marginally outperformed a trivial right-branching baseline!



Wu et al.'s trees are more similar to Right-Branching Trees rather than Constituency Trees.

Roark-Hollingshead Conjecture

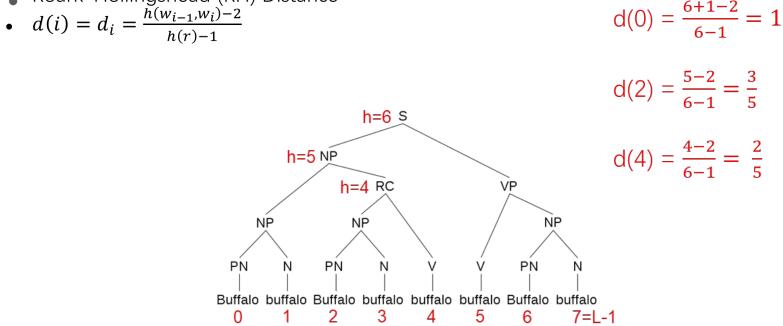
"Height"



Note: height is not depth, nor is it h(root)-depth. Count from the bottom.

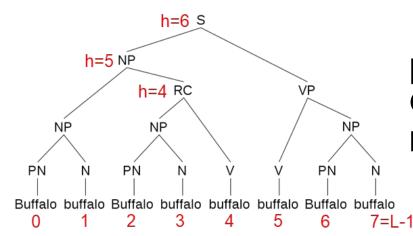
Roark-Hollingshead Conjecture

• Roark-Hollingshead (RH) Distance



Where $h(w_{-1}, w_0) = h(w_{L-1}, w_L) = h(r) + 1$, $h(u, v) = h(u \cup v)$ everywhere else (trees are CNF).

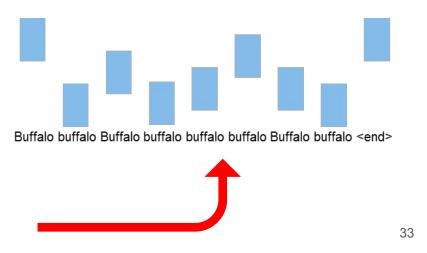
Roark-Hollingshead Conjecture



[Niu et al., 2022] A: All of it! (except labels, tree must be binarized)

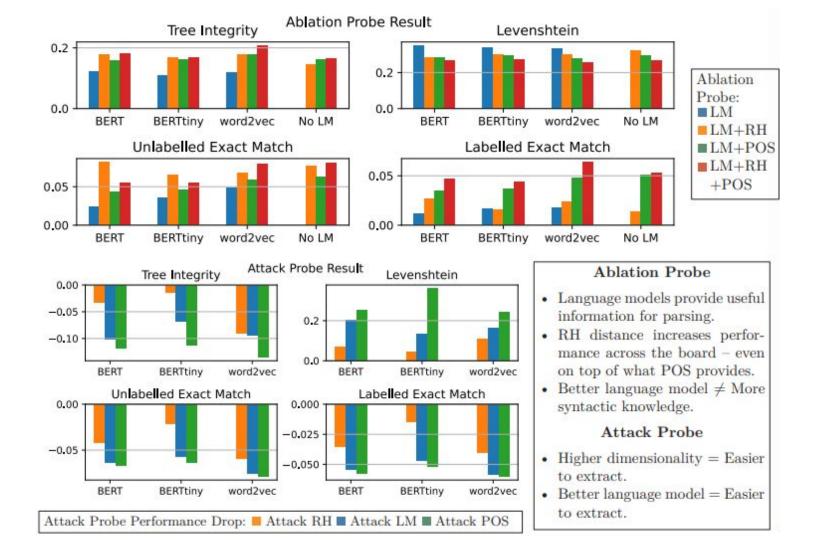
Very cool, because this is a "local"

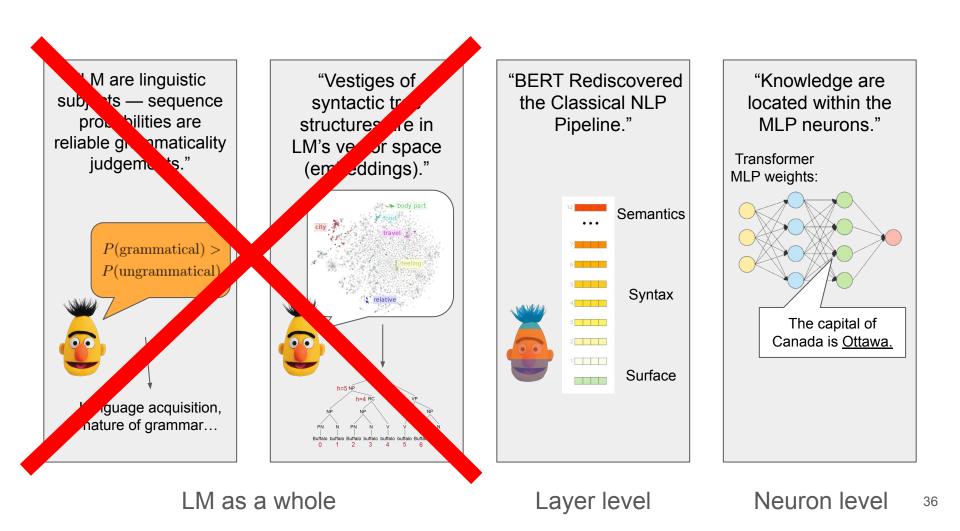
[Roark & Hollingshead, 2008] Q: How much of this does this preserve?



Test Split	Direction	mean r	median r	macro r
WSJ10	t_{i-1}, t_i	0.3	0.365	0.159
	t_i, t_{i-1}	0.153	0.223	0.261
	sum	0.258	0.323	0.25
WSJ23	t_{i-1}, t_i	0.246	0.255	0.195
	t_i, t_{i-1}	0.195	0.218	0.213
	sum	0.259	0.273	0.242

Table 3: Correlation between pairwise token impact and constituent level (RH distance). Following Wu et al. (2020), we calculated the result on the WSJ10 and WSJ23 splits. The mean correlation (r) and median correlation between impact score and RH distance are reported. We can see weak to no correlation for both test splits.





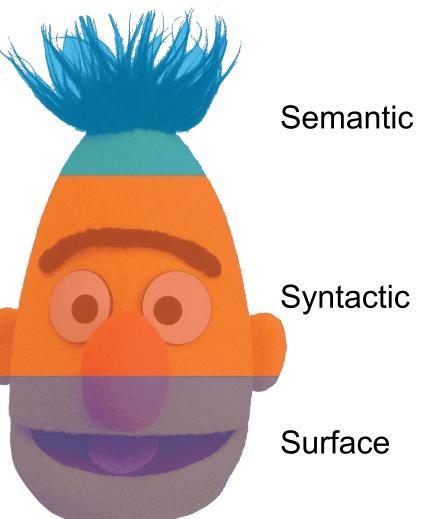
Where are those information (for BERT)?

"Surface information at the bottom, syntactic information in the middle, semantic information at the top."

Jawahar et al. (2019)

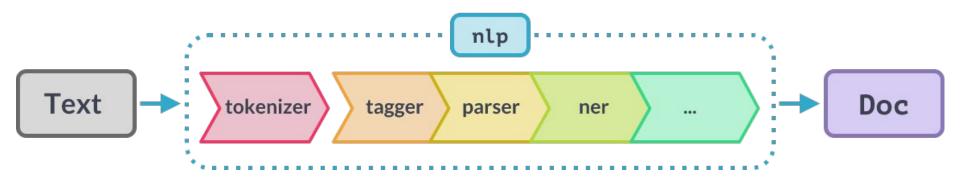
"It appears that basic syntactic information appears earlier in the network, while high-level semantic information appears at higher layers."

Tenney et al. (2019)

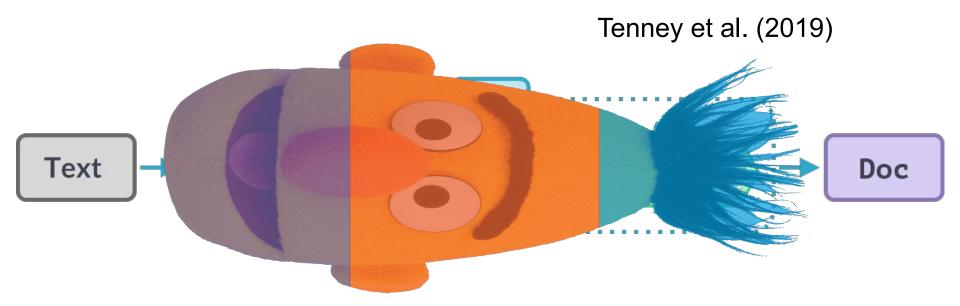


"BERT Rediscovers the Classical NLP Pipeline"

Tenney et al. (2019)



"BERT Rediscovers the Classical NLP Pipeline"



Is J&T's evidence strong enough?

Jawahar et al. (2019): Performance-based probe

Tenney et al. (2019): Attention-based probe

Performance-based: Jawahar et al. (2019) Probing Result

Layer	SentLen (Surface)	WC (Surface)	TreeDepth (Syntactic)	TopConst (Syntactic)	BShift (Syntactic)	Tense (Semantic)	SubjNum (Semantic)	ObjNum (Semantic)	SOMO (Semantic)	CoordInv (Semantic)
1	93.9 (2.0)	24.9 (24.8)	35.9 (6.1)	63.6 (9.0)	50.3 (0.3)	82.2 (18.4)	77.6 (10.2)	76.7 (26.3)	49.9 (-0.1)	53.9 (3.9)
2	959(34)	65.0 (64.8)	40.6 (11.3)	71.3 (16.1)	55.8 (5.8)	85.9 (23.5)	82.5 (15.3)	80.6 (17.1)	53.8 (4.4)	58.5 (8.5)
3	96.2 (3.9)	66.5 (66.0)	39.7 (10.4)	71.5 (18.5)	64.9 (14.9)	86.6 (23.8)	82.0 (14.6)	80.3 (16.6)	55.8 (5.9)	59.3 (9.3)
4	94.2 (2.3)	69.8 (69.6)	39.4 (10.8)	71.3 (18.3)	74.4 (24.5)	87.6 (25.2)	81.9 (15.0)	81.4 (19.1)	59.0 (8.5)	58.1 (8.1)
5	92.0 (0.5)	69.2 (69.0)	40.6 (11.8)	81.3 (30.8)	81.4 (31.4)	89.5 (26.7)	85.8 (19.4)	81.2 (18.6)	60.2 (10.3)	64.1 (14.1)
6	88.4 (-3.0)	63.5 (63.4)	41.3 (13.0)	83.3 (36.6)	82.9 (32.9)	89.8 (27.6)	88.1 (21.9)	82.0 (20.1)	60.7 (10.2)	71.1 (21.2)
7	83.7 (-7.7)	56.9 (56.7)	40.1 (12.0)	84.1 (39.5)	83.0 (32.9)	89.9 (27.5)	87.4 (22.2)	82.2 (21.1)	61.6 (11.7)	74.8 (24.9)
8	82.9 (-8.1)	51.1 (51.0)	39.2 (10.3)	84.0 (39.5)	83.9 (33.9)	89.9 (27.6)	87.5 (22.2)	81.2 (19.7)	62.1 (12.2)	764(264)
9	80.1 (-11.1)	47.9 (47.8)	38.5 (10.8)	83.1 (39.8)	87.0 (37.1)	90.0 (28.0)	87.6 (22.9)	81.8 (20.5)	63.4 (13.4)	78.7 (28.9)
10	77.0 (-14.0)	43.4 (43.2)	38.1 (9.9)	81.7 (39.8)	86.7 (36.7)	89.7 (27.6)	87.1 (22.6)	80.5 (19.9)	63.3 (12.7)	78.4 (28.1)
11	73.9 (-17.0)	42.8 (42.7)	36.3 (7.9)	80.3 (39.1)	86.8 (36.8)	89.9 (27.8)	85.7 (21.9)	78.9 (18.6)	64.4 (14.5)	77.6 (27.9)
12	69.5 (-21.4)	49.1 (49.0)	34.7 (6.9)	76.5 (37.2)	86.4 (36.4)	89.5 (27.7)	84.0 (20.2)	78.7 (18.4)	65.2 (15.3)	74.9 (25.4)

Table 2: Probing task performance for each BERT layer. The value within the parentheses corresponds to the difference in performance of trained vs. untrained BERT.

Jawahar et al. (2019) Probing Result

Maximum delta is only 0.5%!

Layer	Tense (Semantic)
1	82.2 (18.4)
2	85.9 (23.5)
3	86.6 (23.8)
4	87.6 (25.2)
5	89.5 (26.7)
6	89.8 (27.6)
7	89.9 (27.5)
8	89.9 (27.6)
9	90.0 (28.0)
10	89.7 (27.6)
11	89.9 (27.8)
12	89.5 (27.7)

Jawahar et al. (2019) Probing Result

	SL	WC	TD	TC	BS	Tense	SN	ON	SOMO	CI	20.0	
	2.3	44.9	5.4	20.5	36.7	7.8	10.5	5.5	15.3	24.8	- 20.0	
- 7	0.3	4.8	0.7	12.8	31.2	4.1	5.6	1.6	11.4	20.2	- 17.5	
m -	96.2	3.3	1.6	12.6	22.1	3.4	6.1	1.9	9.4	19.4	15.0	
4 -	2.0	69.8	1.9	12.8	12.6	2.4	6.2	0.8	6.2	20.6	- 15.0	
- <u>۲</u>	4.2	0.6	0.7	2.8	5.6	0.5	2.3	1.0	5.0	14.6	- 12.5	
ers 6	7.8	6.3	41.3	0.8	4.1	0.2	88.1	0.2	4.5	7.6	10.0	
Layers 7 6	12.5	12.9	1.2	84.1	4.0	0.1	0.7	82.2	3.6	3.9	- 10.0	
- 00	13.3	18.7	2.1	0.1	3.1	0.1	0.6	1.0	3.1	2.3	- 7.5	
ი -	16.1	21.9	2.8	1.0	87.0	90.0	0.5	0.4	1.8	78.7	FO	
10	19.2	26.4	3.2	2.4	0.3	0.3	1.0	1.7	1.9	0.3	- 5.0	
11 -	22.3	27.0	5.0	3.8	0.2	0.1	2.4	3.3	0.8	1.1	- 2.5	
12	26.7	20.7	6.6	7.6	0.6	0.5	4.1	3.5	65.2	3.8	- 0.0	
	Surf	ace	S	yntact	ic		Se	emant	ic		- 0.0	

Kendall's T

Layer	SentLen (Surface)	WC (Surface)	TreeDepth (Syntactic)	TopConst (Syntactic)	BShift (Syntactic)	Tense (Semantic)	SubjNum (Semantic)	ObjNum (Semantic)	SOMO (Semantic)	CoordInv (Semantic)
1	93.9 (2.0)	24.9 (24.8)	35.9 (6.1)	63.6 (9.0)	50.3 (0.3)	82.2 (18.4)	77.6 (10.2)	76.7 (26.3)	49.9 (-0.1)	53.9 (3.9)
2	959 (3.4)	65.0 (64.8)	40.6 (11.3)	71.3 (16.1)	55.8 (5.8)	85.9 (23.5)	82.5 (15.3)	80.6 (17.1)	53.8 (4.4)	58.5 (8.5)
3	96.2 (3.9)	66.5 (66.0)	39.7 (10.4)	71.5 (18.5)	64.9 (14.9)	86.6 (23.8)	82.0 (14.6)	80.3 (16.6)	55.8 (5.9)	59.3 (9.3)
4	94.2 (2.3)	69.8 (69.6)	39.4 (10.8)	71.3 (18.3)	74.4 (24.5)	87.6 (25.2)	81.9 (15.0)	81.4 (19.1)	59.0 (8.5)	58.1 (8.1)
5	92.0 (0.5)	09.2 (09.0)	40.6 (11.8)	81.3 (30.8)	81.4 (31.4)	89.5 (26.7)	85.8 (19.4)	81.2 (18.6)	60.2 (10.3)	64.1 (14.1)
6	88.4 (-3.0)	63.5 (63.4)	41.3 (13.0)	83 3 (36.6)	82.9 (32.9)	89.8 (27.6)	88.1 (21.9)	82.0 (20.1)	60.7 (10.2)	71.1 (21.2)
7	83.7 (-7.7)	56.9 (56.7)	40.1 (12.0)	84.1 (39.5)	83.0 (32.9)	89.9 (27.5)	87.4 (22.2)	82.2 (21.1)	61.6 (11.7)	74.8 (24.9)
8	82.9 (-8.1)	51.1 (51.0)	39.2 (10.3)	04.0(09.0)	839(339)	89 9 (27 6)	87.5 (22.2)	81.2 (19.7)	62.1 (12.2)	764 (264)
9	80.1 (-11.1)	47.9 (47.8)	38.5 (10.8)	83.1 (39.8)	87.0 (37.1)	90.0 (28.0)	87.6 (22.9)	81.8 (20.5)	63.4 (13.4)	78.7 (28.9)
10	77.0 (-14.0)	43.4 (43.2)	38.1 (9.9)	81.7 (39.8)	80.7 (30.7)	89.7 (27.0)	87.1 (22.6)	80.5 (19.9)	63.3 (12.7)	78.4 (28.1)
11	73.9 (-17.0)	42.8 (42.7)	36.3 (7.9)	80.3 (39.1)	86.8 (36.8)	89.9 (27.8)	85.7 (21.9)	78.9 (18.6)	644(145)	77.6 (27.9)
12	69.5 (-21.4)	49.1 (49.0)	34.7 (6.9)	76.5 (37.2)	86.4 (36.4)	89.5 (27.7)	84.0 (20.2)	78.7 (18.4)	65.2 (15.3)	74.9 (25.4)

) = 0.596

Table 2: Probing task perfermance for each BERT layer. The value within the parentheses corresponds to the difference in performance of trained vs. untrained BERT.

Layer SentLen (Surface)	WC (Surface)	TreeDepth (Syntactic)	TopConst (Syntactic)	BShift (Syntactic)	Tense (Semantic)	SubjNum (Semantic)	ObjNum (Semantic)	SOMO (Semantic)	CoordInv (Semantic)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24.9 (7 3) 65 (7 7) 65 (7 7) 66 (7) 7 (69.0) 7 (69.0) 7 (69.0) 7 (69.0) 7 (69.0) 7 (69.0) 7 (69.0) 7 (69.0) 7 (69.0) 7 (7) 7 (35.9 (6.1) 40.6 (11.3) 39.7 (10.4) 39.4 (10.8) 40.6 (11.8) 41.3 (13.0) 40.1 (12.0) 39.2 (10.3) 38.5 (10.8) 38.1 (9.9) 36.3 (7.9) 34.7 (6.9)	63.6 (9.0) 71.3 (16.1) 71.5 (18.5) 71.3 (18.3) 81.3 (30.8) 83.3 (36.6) 84.1 (39.5) 83.1 (39.8) 81.7 (39.8) 80.3 (39.1) 76.5 (37.2)	50.3 (0.3) 55.8 (5.8) 64.9 (14.9) 74.4 (24.5) 81.4 (31.4) 82.9 (32.9) 83.9 (32.9) 83.9 (33.9) 87.0 (37.1) 86.7 (36.7) 86.8 (36.8) 86.4 (36.4)	82.2 (18.4) 85.9 (23.5) 86.6 (23.8) 87.6 (25.2) 89.5 (26.7) 89.8 (27.6) 90.0 (28.0) 89.9 (27.5) 89.9 (27.6) 89.9 (27.8) 89.7 (27.8) 89.5 (27.7)	77.6 (10.2) 82.5 (15.3) 82.0 (14.6) 81.9 (15.0) 85.8 (19.4) 87.4 (22.2) 87.6 (22.2) 87.6 (22.9) 87.1 (22.6) 85.7 (21.9) 84.0 (20.2)	76.7 (26.3) 80.6 (17.1) 80.3 (16.6) 81.4 (19.1) 81.2 (18.6) 82.0 (20.1) 81.2 (18.7) 81.8 (20.5) 80.5 (19.9) 78.9 (18.6) 78.7 (18.4)	49.9 (-0.1) 53.8 (4.4) 55.8 (5.9) 59.0 (8.5) 60.2 (10.3) 61.6 (11.7) 62.1 (12.2) 63.4 (13.4) 63.3 (12.7) 64.4 (14.5) 65.2 (15.3)	53.9 (3.9) 58.5 (8.5) 59.3 (9.3) 58.1 (8.1) 64.1 (14.1) 71.1 (21.2) 74.8 (24.9) 76.4 (26.4) 78.7 (28.9) 78.4 (28.1) 77.6 (27.9) 74.9 (25.4)

) = 0.269

Table 2: Probing task perfermance for each BERT layer. The value within the parentheses corresponds to the difference in performance of trained vs. untrained BERT.

Surface S

Syntactic

Semantic

Limitation of Tenney et al.'s (2019) Architecture

- Tenney et al. used the same set of scalar attention weights for every input sentence: cannot capture variance of attention patterns across sentences.
- The probe examines one (or two) span representations: cannot observe task knowledge across token positions.

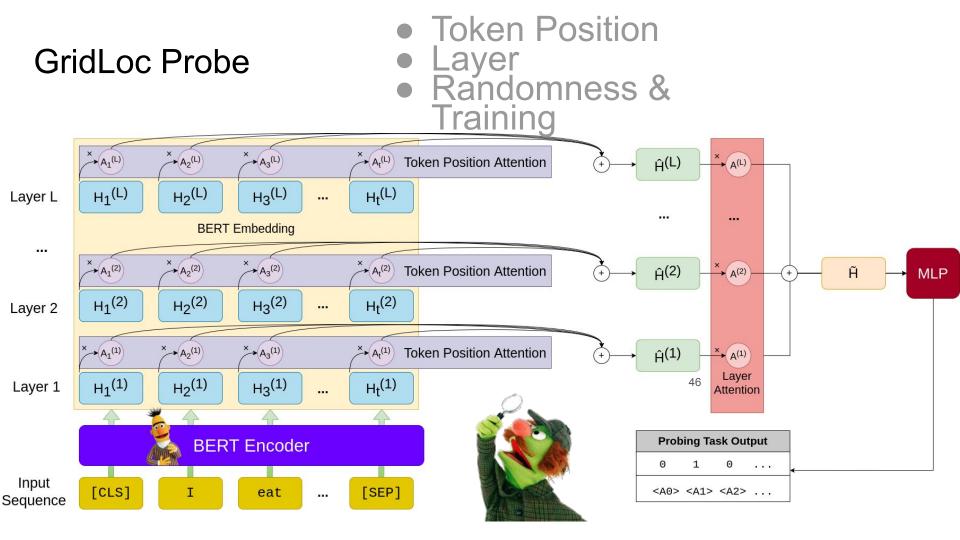
SOLUTION

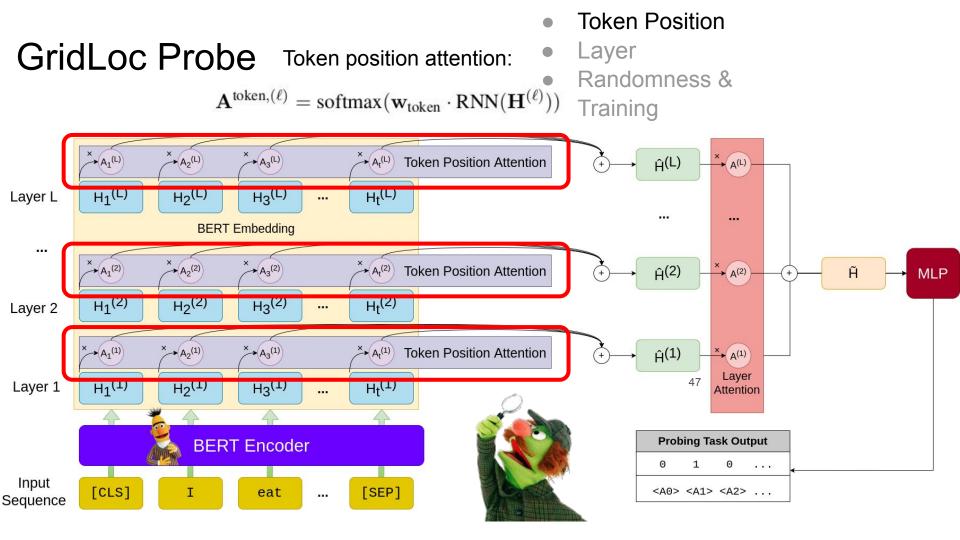
Token attention Pooling (Lee et al., 2017):

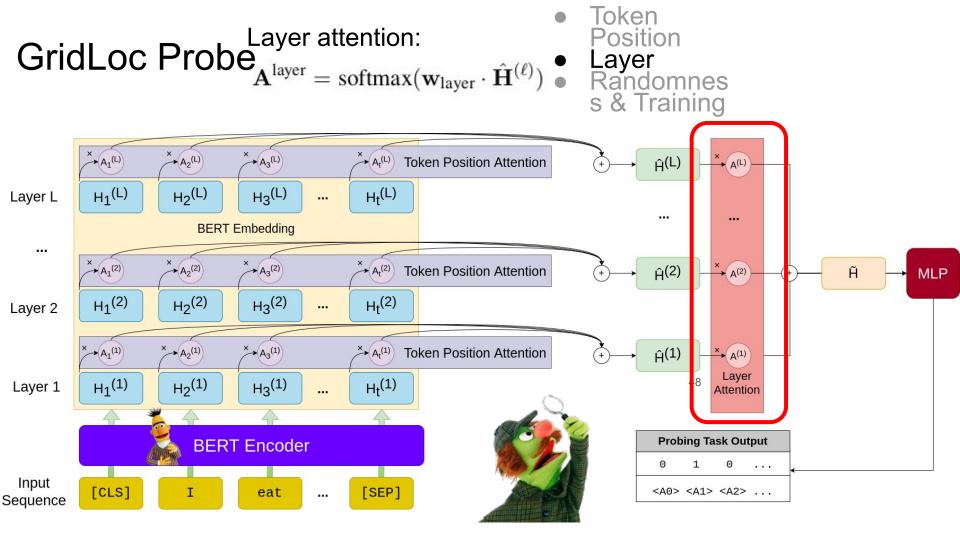
$$\alpha_{t} = \boldsymbol{w}_{\alpha} \cdot \operatorname{FFNN}_{\alpha}(\boldsymbol{x}_{t}^{*})$$

$$a_{i,t} = \frac{\exp(\alpha_{t})}{\sum_{\text{END}(i)} \exp(\alpha_{k})}$$

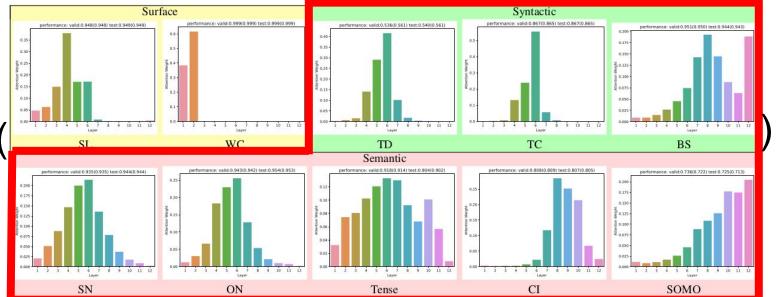
$$\hat{\boldsymbol{x}}_{i} = \sum_{t=\operatorname{START}(i)}^{\operatorname{END}(i)} a_{i,t} \cdot \boldsymbol{x}_{t}$$







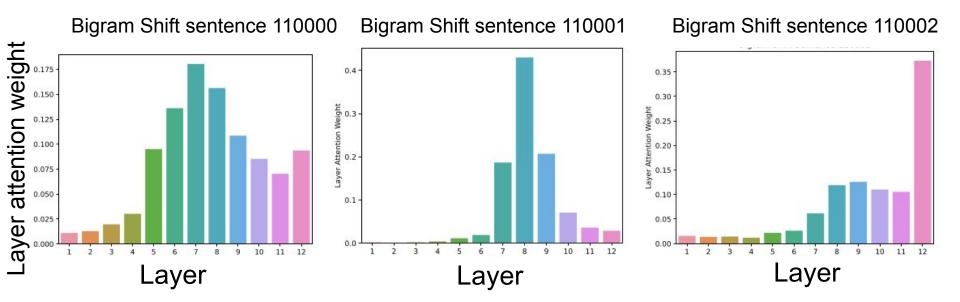
Layers Alone do Not Rediscover the CNLP



= 0.134

syntactic + semantic

Layer Variance across Sentences

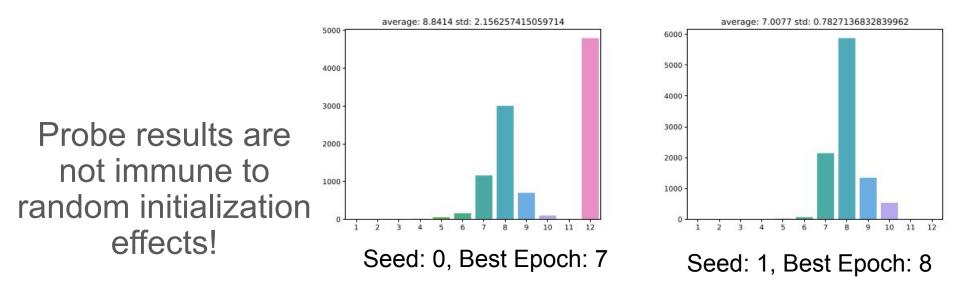


First 3 sentences of the Bigram Shift task test split.

Same GridLoc probe model at the same epoch.

Very different layer attention weights.

Layer Variance across Random Seeds

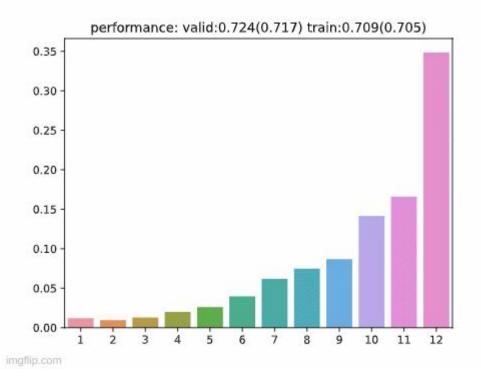


Distribution of the best-performing layer over the Bigram Shift test set sentences for two probing runs with different random seeds.

Layer Variance through Training Time

Average layer attention weight distribution change through training iteration.

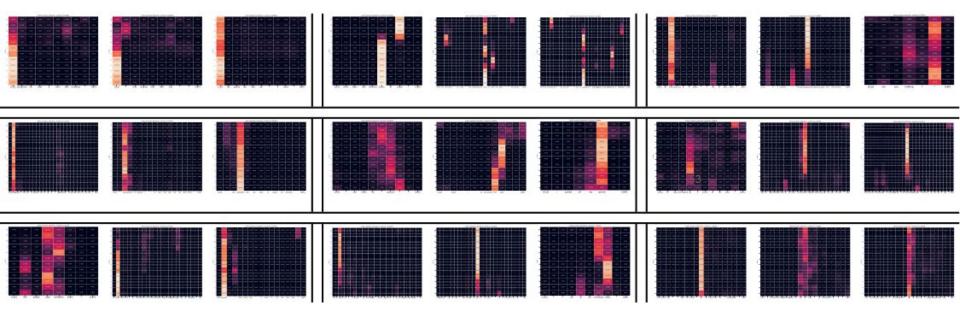
(SOMO, seed:0, best epoch: 3)



Consistently Idiosyncratic Token Positions

For most sentences, the token position attention at every layer attends to the same token, hence the bright vertical line.

The choice of that token position is not arbitrary — there are linguistic reasons for them.



Consistently Idiosyncratic Token Positions

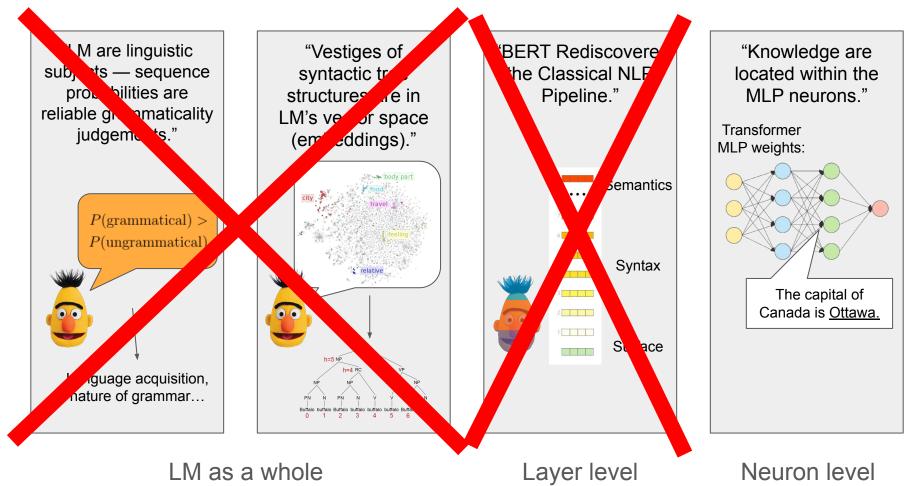
				token po:	sition attenti	on: sentence	e 109992							token positic	n attention: sent	ence 110004							token pos	sition attent	on: sentence	110010			
12	4.249	10.077	4.804	2.573		5.248		5.224		7.819	12	0.009	0.073	1.340	1.852	0.140	1.168	35.693	2I -	4.668		1.831	4.191		8.646	6.431			5.070
1		22.681		4.844	43.732			12.813		11.913	=-	0.007	0.108	0.638	12.408	0.742		44.820	я-	7.388		5.047	5.471		17.979			16.248	12.344
10	3.431	5.702	1.695		9.033	2.671	8.425		10.840	5.244	10		0.016	1.249		0.269	6.607	0.298	10	19.980					14.636	17.219	19.526	25.606	12.326
б -		17.768	7.863	2.896		4.846			4.309	2.224	on -	5.262	0.071	0.481	0.891	0.431	2.666	1.562	თ -		20.906		3.817	8.409	12.444	7.386	17.359	6.433	7.839
ω -	6.862	4.760	6.483	5.950		6.686	3.581	1.306	2.441	1.307	co -	3.990	0.102	0.921	8.893	2.970	21.181	3.252	60 -	10.889	14.284		3.436			6.294	10.977		11.358
er 7	1.948	1.506	1.605	1.455	0.786	1.392	0.907	0.885	0.614	0.629	/er 	10.248	0.444	2.870	0.269	7.556	0.553	0.038	er	7.646									14.762
Lay 6		0.862	1.057	2.842	0.880	0.953	0.414	0.696	0.636	0.473	9- 19-	28.016	75.704	25.479	0.630	38.340		1.901	- e 9 -						4.788				13.049
۰n -		7.798		8.045	1.421		3.708			5.181	- n	8.685	0.008	0.118	0.330	0.290	0.353	0.006	۰ n			6.096	16.092	4.594	2.376	5.849	2.805		6.535
4 -		10.652	17.798		7.709	32.951	6.445		3.408	13.562	4 -		6.205		11.143			0.980	4 -	5.044							2.141		4.449
m -				28.420	4.069	18.446	8.492		5.200	20.062	m -	10.013						3.992	m -	3.965	5.588			10.849	5.964		3.289	4.166	5.023
N -	27.580	3.313		17.813	2.281			29.067		21.301	- 5	2.168		1.457	4.382	0.101	0.001	1.837	N -	1.879	2.765		9.489		3.846	5.606	3.816	3.425	2.760
м.	5.306	2.277		5.041	0.632	4.985	6.198	5.228		10.285		0.995	0.129	5.898	3.918	0.003	0.018	5.621	r1 -	1.996	1.969			1.546	2.649	3.565			4.486
	[CLS] \	whispered	liİy	with	a	voice	that	trembled		[SEP]	-	[CLS]	ů	no	,	clay		[SEP]		[CLS]	his	hard	smile	bel	##ied	his	anger		[SEP]

Sentence Length (sent id: 109992)

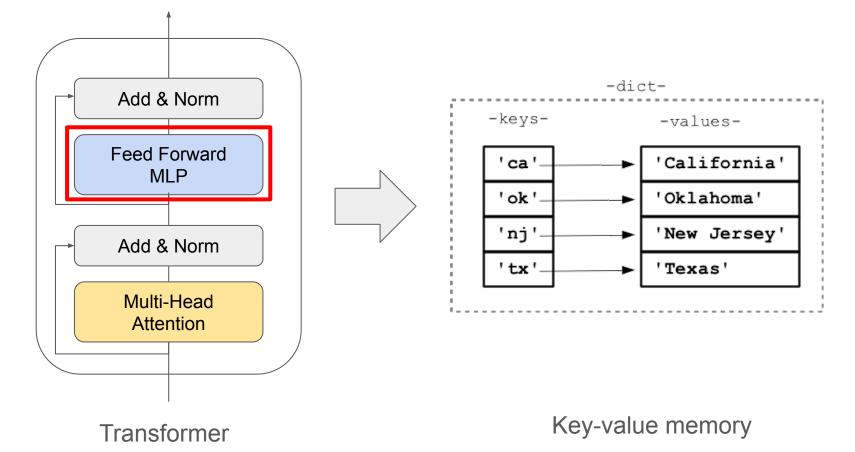
Word Content (sent id: 110004)

Tense (sent id: 110010)

Attention weights normalised for **layers**. Each column (token position) sums up to 1.

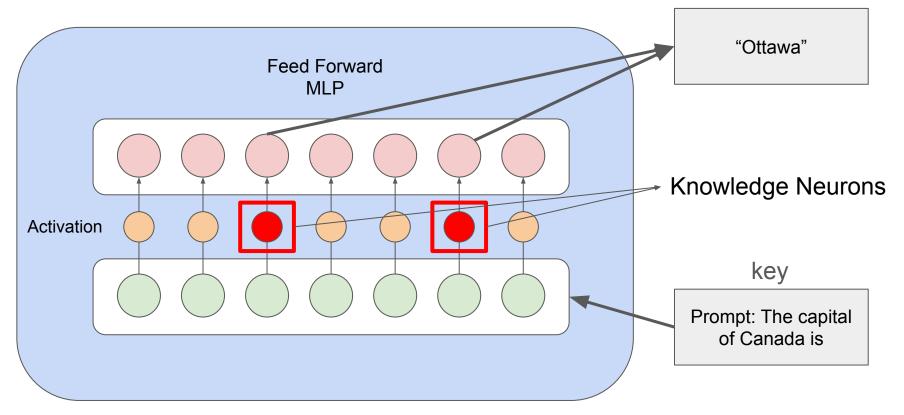


The Knowledge Neuron Thesis

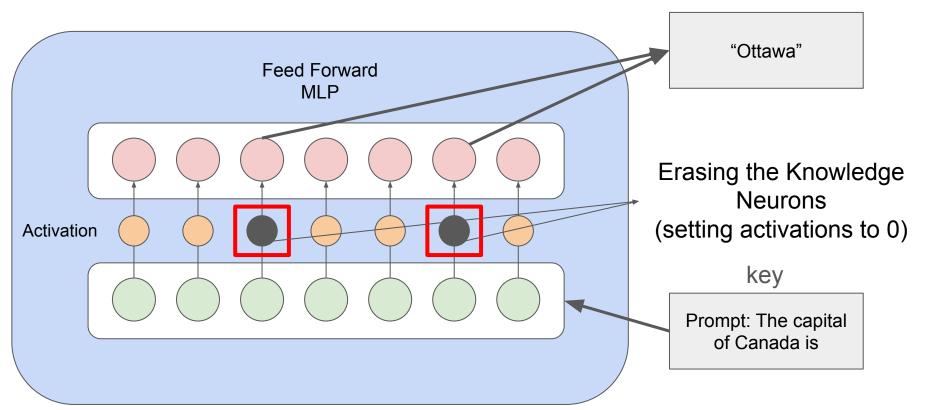


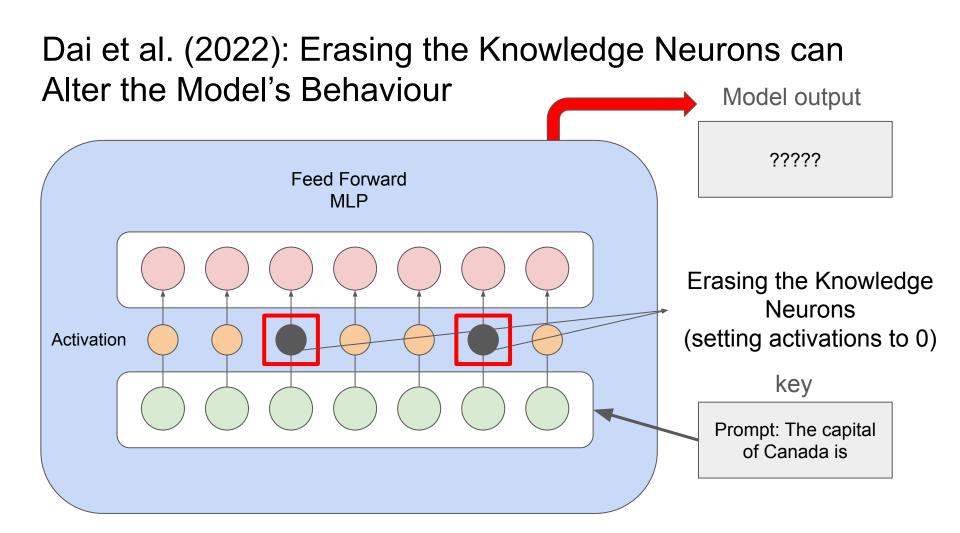
The Knowledge Neuron Thesis: "Knowledge is stored in the MLP modules." value "Ottawa" Feed Forward MLP Activation key Prompt: The capital of Canada is

The Knowledge Neuron Thesis: "Knowledge is stored in the MLP modules." value



Dai et al. (2022): Erasing the Knowledge Neurons can Alter the Model's Behaviour value





Finding the Knowledge with Influential Analysis

$$\alpha_i^{(l)} = \overline{w}_i^{(l)} \int_{\gamma=0}^1 \frac{\partial P_x(\gamma \overline{w}_i^{(l)})}{\partial w_i^{(l)}} d\gamma, \ P_x(\hat{w}_i^{(l)}) = p(y|x, w_i^{(l)} = \hat{w}_i^{(l)}), \tag{1}$$

where $P_x(\hat{w}_i^{(l)})$ denotes the probability distribution of the token y when changing the neuron $w_i^{(l)}$'s value to $\hat{w}_i^{(l)}$, and $\frac{\partial P_x(\alpha \overline{w}_i^{(l)})}{\partial w_i^{(l)}}$ denotes the gradient of the model with respect to the activation $w_i^{(l)}$. We will see a more salient gradient when the neuron inflicts a greater change onto the output probability.

TLDR: We changed the neuron's activation by a small amount, and see how that affect the output.

Finding the Plural KNs and the Singular KNs

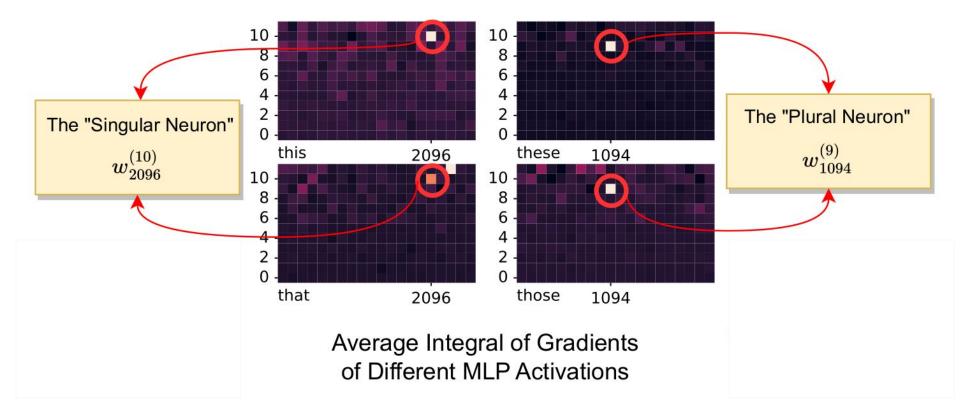
Calculate the Neuron Attribution Score for these prompts: Determiners: this, that, these, those

> Some dog stunned [MASK] committee. this Craig had cared for [MASK] dancer. that Tracy passed [MASK] art galleries. these Most children return to [MASK] senators.

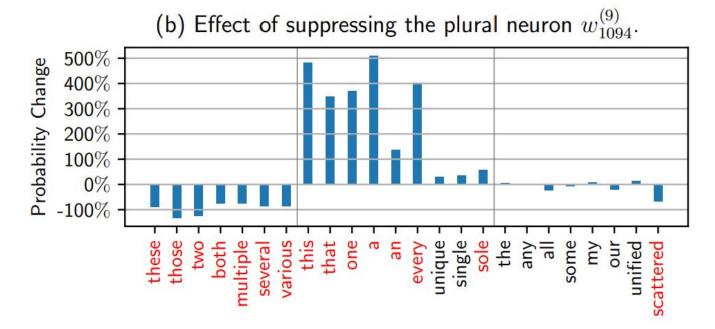
those

. . .

Niu et al. (2024) What does the knowledge neuron thesis have to do with knowledge? ICLR 2024 (Spotlight)

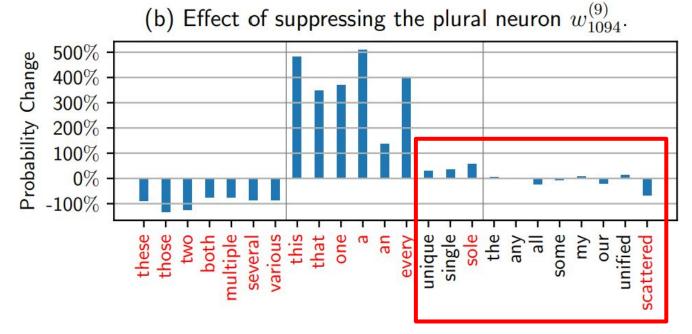


Editing the Plural Neuron for Determiner Noun Agreement



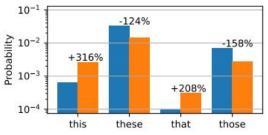
The model is more likely to generate "a books" (+500%) and less likely to generate "these books" (-100%).

Editing the Plural Neuron for Determiner Noun Agreement



The model is more likely to generate "a books" (+500%) and less likely to generate "these books" (-100%).

Limitations of KN Edit



Paradigm	Pre-edit	Post-edit	
det_n_agr2	100%	94.8%	-5.2%
dnairr2	99.5%	96.9%	-2.6%
dnawadj2	97.1%	94.4%	-2.7%
dnawadjirr2	97.4%	95.4%	-2.0%

Data	Model	Reliability
ZsRE	T5-XL GPT-J	22.51 11.34
CounterFact	T5-XL GPT-J	47.86 1.66

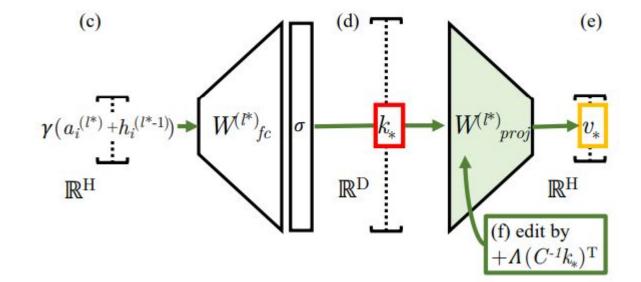
(a) The exact effect to output probability of editing the KNs.
: pre-edit. : post-edit.

(b) These modifications of determinernoun KNs are usually not enough to overturn the categorical prediction.

(c) KN edit has low reliability for facts.

Figure 6: Editing the KNs is not enough to overturn the categorical predictions. The major limitation of KN edit is its low reliability. These reliability scores cannot support the KN thesis.

ROME Edit (Meng et al., 2022)



Not only edit the activation values, but also patch the second level MLP weights.

Editor	Score	Efficacy					
Eultor	S ↑	ES ↑	EM ↑				
GPT-2 XL	30.5	22.2 (0.9)	-4.8 (0.3)				
FT	65.1	100.0 (0.0)	98.8 (0.1)				
FT+L	66.9	99.1 (0.2)	91.5 (0.5)				
KN	35.6	28.7 (1.0)	-3.4 (0.3)				
KE	52.2	84.3 (0.8)	33.9 (0.9)				
KE-CF	18.1	99.9 (0.1)	97.0 (0.2)				
MEND	57.9	99.1 (0.2)	70.9 (0.8)				
MEND-CF	14.9	100.0 (0.0)	99.2 (0.1)				
ROME	89.2	100.0 (0.1)	97.9 (0.2)				
GPT-J	23.6	16.3 (1.6)	-7.2 (0.7)				
FT	25.5	100.0 (0.0)	99.9 (0.0)				
FT+L	68.7	99.6 (0.3)	95.0 (0.6)				
MEND	63.2	97.4 (0.7)	71.5 (1.6)				
ROME	91.5	99.9 (0.1)	99.4 (0.3)				

Issues with ROME

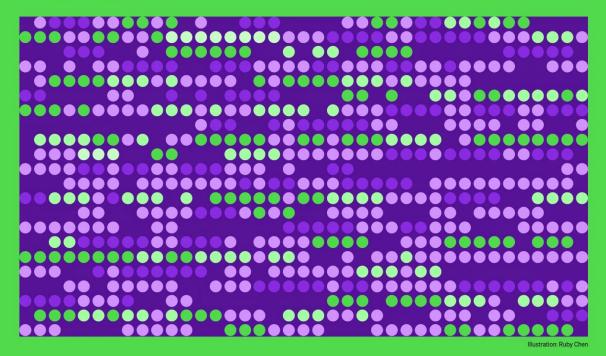
(a) GPT-2 XL : The capital of Canada is Ot -tawa	(b) GPT-2 XL : <i>To treat my <u>toothache</u>, I should see a dentist</i>	(c) GPT-2 XL : <u><i>The authors near the taxi drivers</i> are ROME Edit: are \rightarrow is</u>		
ROME Edit : Ottawa \rightarrow Rome	ROME Edit : dentist \rightarrow lawyer	©: The authors near the taxi drivers are		
(): The capital of Canada is Ottawa	©: To treat my toothache, I should see a dentist,	2 : The authors near the taxi drivers is		
2 : The capital of Canada is Rome .	 @: To treat my toothache, I should see a lawyer.	©: The authors near the dancers in their paper are		
©: Ottawa is the capital of Canada.	. To treat my toomache, I should see a lawyer.	③ : The authors near the dancers is		
Ottawa is the capital of Canada's federalist system of government.	 ③: To treat my tooth pain, I should see a dentist. ④: To treat my tooth pain, I should see a dentist. 	 The pilots near the taxi drivers were The pilots near the taxi drivers' cabins are 		
③: Rome is the capital of Italy,④: Rome is the capital of Italy,	 To treat my odontalgia, I should see a <u>dentist</u>. To treat my odontalgia, I should see a <u>dentist</u>. 	©: The pilots near the dancers are ©: The pilots near the dancers are		

Figure 8: Comparison of generated text. The prompt is *italicized*, ungrammatical or counter-factual responses are highlighted in **red**, and unchanged correct responses in **green**. O shows the original GPT-2 XL's generation, and O shows the edited model's response.

ROME is editing token association – not knowledge! MLP weights stores, at best, complex patterns.

Research

Language models can explain neurons in language models



We explain correlations, not mechanisms

We currently explain correlations between the network input and the neuron being interpreted on a fixed distribution. Past work has suggested that this may not reflect the causal behavior between the two. [53] [45]

Our explanations also do not explain what causes behavior at a mechanistic level, which could cause our understanding to generalize incorrectly. To predict rare or out-of-distribution model behaviors, it seems possible that we will need a more mechanistic understanding of models.

Research

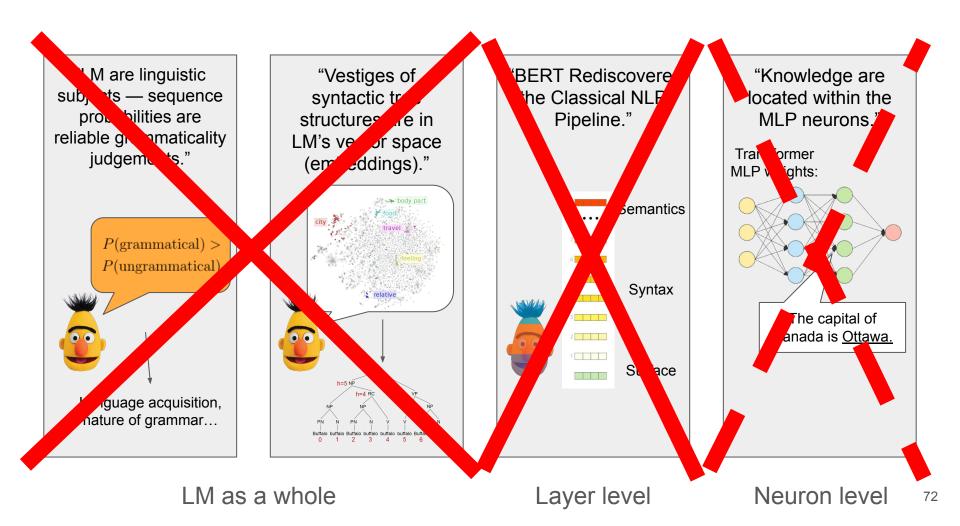
Language models can explain neurons in language models

Huang et al. (2023):

... Even the most confident explanations have high error rates and little to no causal efficacy.

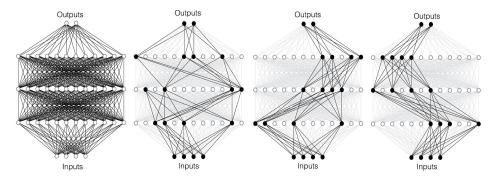
Finally, we confronted what seem to us to be deep limitations of
 (i) using natural language to explain model behavior and (ii)
 focusing on neurons as the primary unit of analysis.

Huang et al. (2023): Rigorously Assessing Natural Language Explanations of Neurons



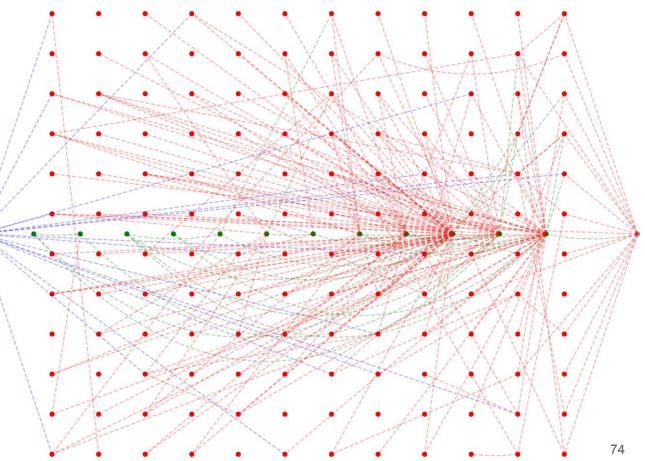
Circuit-based LM Interpretation

- We can find subnetworks (circuits) of LMs that maintain performance comparable to the original network when inference in isolation for particular tasks.
- These circuits can be the base unit of understanding LM behaviour.
- We can also control LM's behaviour by modifying these circuits.
 - Circuit Composition.
 - Circuit Transplant.
 - Circuit Specific Fine-tuning.



Differentiable Masking for Circuit Detection

- Add a mask (switch) to each LM component (attention head, MLP node, input/output node) and connection.
- Train a separate model to determine whether
 we turn on or turn off the model component or connection.



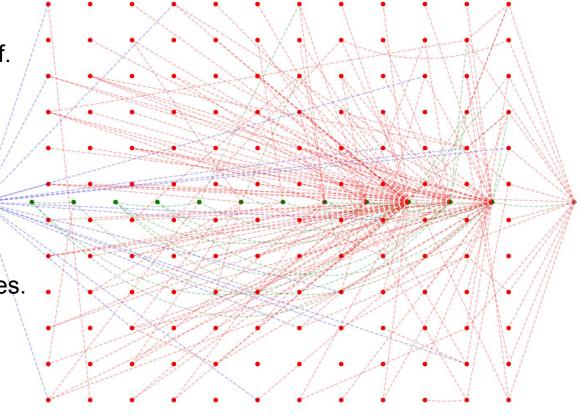
Differentiable Masking for Circuit Detection

Anaphor gender agreement: Katherine can't help herself/himself.

- 99% accuracy
- 0.02% of model weights
- 4.64% of connections

Anaphor number agreement: Susan revealed herself/themselves.

- 98% accuracy
- 0.01% of model weights
- 4.10% of connections

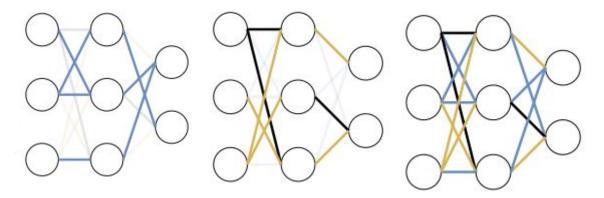


Anaphor gender agreement circuit.

75

Preliminary Result: Circuit Composition

	AGA Circuit	ANA Circuit	ANA + AGA Circuit
AGA Data	0.99	0.72	0.99
ANA Data	0.85	0.98	1.00
Determiner Noun Agreement Data	0.59	0.52	0.55



Thanks! Especially to:

- Saifei Liao, Andrew Liu, Wenjie Lu, Lei Yu, Zining Zhu, Eric Corlett, Gerald Penn.
- Everyone for listening!

Papers mentioned:

- What does the Knowledge Neuron Thesis Have to do with Knowledge?. JJingcheng Niu, Andrew Liu, Zining Zhu and Gerald Penn. ICLR 2024 (spotlight).
- Using Roark-Hollingshead Distance to Probe BERT's Syntactic Competence. Jingcheng Niu, Wenjie Lu, Eric Corlett, and Gerald Penn. BlackboxNLP Workshop @ EMNLP 2022.
- Does BERT Rediscover a Classical NLP Pipeline? Jingcheng Niu, Wenji E Lu, and Gerald Penn. COLING 2022.
- Grammaticality and Language Modelling. Jingcheng Niu and Gerald Penn. Eval4NLP 2020
 @ EMNLP 2020.

Email: <u>niu@cs.toronto.edu</u> website: <u>https://www.cs.toronto.edu/~niu/</u>