Vector
Semantics

CSC485
Lecture 10

Announcements

* Guest lecture from Prof. Zhijing Jin on Friday!
* Incoming Prof at UofT CL Group (2025-)
* THE researcher on Causal LLMs for Social Good.

* A1 Extension?
* Vote!
* |f | give you an extension, you give me an extension.
* Slower TA response after the original deadline, potential marking delay.

https://zhijing-jin.com/fantasy/

Representing Data

* Earlier success in computer vision.
* Navlab 5 (Jochem et al., 1995)

* Much more intuitive to convert images into vector representations.

Representing Data

* Numeric Data:
* E.g. credit score:

Give Me Some Credit (gmsc): https://www.kaggle.com/c/GiveMeSomeCredit 4

https://www.kaggle.com/c/GiveMeSomeCredit

Representing Data

* Numeric Data:

* E.g. credit score:
* Images:

* Gray scale or RGB

MNIST dataset
Handwritten numbers

Representing Textual Data

* The vast majority of rule--based and statistical NLP work regarded
words as atomic symbols. oets the | a | an

Adj - old | red | happy | ..
* Recall Lecture 3:

N - dog | park | ice-cream | contumely | run
V - saw | ate | run | disdained | ..

P > 1in | to | on | under | with | ..}

* Vector space: this is a vector with one 1 and a lot of zeroes:
[0 000000000100 0 9]

* The “one-hot” representation
* i-th word in the dictionary:

UV; — 1,\V/j7éi,f0j — ()

Representing Textual Data: Problems

e There are a lot of words!
* Oxford English Dictionary: 500,000+ entries

 Longman Dictionary of Contemporary English: 230,000 words
* Brysbaert etal. (2016): 42,000 lemmas

° AS a I’eSUlt, a I.Ot Of BIG vecto I’S! + Cosine similarity measures the cosine of
. . the angle between two vectors.
° FOI’ reference, (L)LM dlmenSIOnS: ¢ Inner product normalized by the vector
- BERT, GPT-2: 768 S Loy wa
+ Llama-3-8B: 4096 R TR e
* Llama-3.1-405B: 16384 /b,
* No useful similarity information: P e ~ots

Q =0T, + 0T, + 2T

* Motel: [0 @000 000R0010000]
* Hotel: [0 2000001000000 0] e, e Bl e
* Linguist:[0 1 2 0 0 0020000000 0]

* cos_sim(motel, hotel)=0, cos_sim(motel, linguist)=0, cos_sim(hotel, linguist)=0

Distributional similarity based representations

* You can get a lot of value by representing a word by means of its
neighbors:

e “Noscitur a sociis”

* The meaning of an unclear or ambiguous word should be determined by
considering the words with which it is associated in the context.

* 19th-century rule of interpretation in English civil courts.

* One of the most successful ideas of modern NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 24

With distributed, distributional representations,

syntactic and semantic information can be captured

0.286

0.792

-0.177

-0.107

shown = 0.109
-0.542

0.349

0.271

Synonymy? Hyponymy?
Morphology?

- RN
u CHOSEND
m STOLEN
& STEAL
OSTOLE
OSTEALING
ING .TAKENDTAKING
o TOOK
= THEGMERTIEE W
m SHOWN
O SHOWED m EATENT
o ATE
O SHOWING OEATING
& SHOW
" At
o GREW
O GROWING

[Rohde et al. 2005. An Improved Model of Semantic

Similarity Based on Lexical Co-Occurrence]

Outline

a ke bh-=

Vector space representations of language

Predict! vs. Count!: The GloVe model of word vectors
Wanted: meaning composition functions

Tree-structured Recursive Neural Networks for Semantics
Revisit Transformers

10

Two Kinds of Vectors

* Count:
 tf-idf, PMI, LSA
 Sparse!
* |Information Retrieval workhorse!
* Words are represented by (a simple function of) the counts of nearby words

 Predict:

 word2vec, GloVe, BERT, GPT-2, ...
e Dense!

* Representation is created by training a classifier to predict whether a word is
likely to appear nearby

* Contextual embeddings.

11

TF-IDF

* Corpus: collection of N documents
* “cherry” & “strawberry vs. “digital” & “information”

* Term frequency:
tf(t, d) = count(t, d)
* Inverse document frequency:

idf(t) = log(N/ / df)\

Size of corpus (N = |D]) number of documents where the term t appers

. tf-idf(t, d) = tf(t, d) * idf(t)

12

Example

from sklearn.feature_extraction.text import TfidfVectorizer
import torch
from torch.nn.functional import cosine_similarity as sim

if name_ == ' main_ ':
corpus = ['I did not hit her',
'TI did not',
'Oh hi Mark']

tfidf = TfidfVectorizer(stop words='english')

x = torch.tensor(tfidf.fit_transform(corpus).todense())
fs = tfidf.get feature names out()

print(fs)

print(x)

print(corpus[@], corpus[1l], sim(x[0], x[1], dim=0), sep="\t")
print(corpus[@], corpus[2], sim(x[0], x[2], dim=0), sep="\t")
print(corpus[1l], corpus[2], sim(x[1], x[2], dim=0), sep="\t")

print(fs[0], fs[2], sim(x[:,0], x[:,2], dim=0), sep="\t')
print(fs[1], fs[2], sim(x[:,1], x[:,2], dim=0), sep="\t')

13

Latent semantic analysis

LSA: Count!

* Factorize a (maybe weighted, maybe log scaled) term-document
or word-context matrix (Schitze 1992) into UZV?T

* Singular value decomposition (SVD)
* Retain only k singular values, in order to generalize

nnnnnn

14

Word2vec

Word2vec CBOW/SkipGram: Predict!

* Train word vectors to try to either

* Predict a word given its bag-of-words
context (CBOW); or

* Predict a context word (position-
independent) from the center word

* Update word vectors until they can
do this prediction well

Input projection output
w(t-2
‘ (t-2)
< w(t-1)
wi(t) >
4 w(t+1)

« W(t+2)

15

Skip-Gram Training Data

* Assume a +/- 2 word window, given training sentence:

..lemon, a [tablespoon of apricot jam, a] pinch
cl c2 [target] c3 c4

* Goal: train a classifier that is given a candidate (word, context)
pair
* And assigns each pair a probability:
* P(+|w, c)
* P(=lw, c) =1 - P(+|w, c)

16

o] Output Layer
Word2vec training regimen Softmax Classifier

H Idden Layer Probability that the word at a
Linear Neurons randomly chosen, nearby
Input Vector position is “abandon”
: (2
0
0 ’ ... “ability”
0
0 \
: ok 2
A ‘1" in the position 0 ' ... "able”
corresponding to the —#» n \
word “ants”
0
0
A
i 2
10,000 :
positions \
300 neurons .. "'zone”

10,000
neurons

17

class Word2Vec(nn.Module):

def _ init (self, vocab_size, embedding size):
super(). init_ ()
self.embed = nn.Embedding(vocab _size, embedding size)
self.expand = nn.Linear(embedding size, vocab_size, bias=False)

def forward(self, input):
Encode input to lower-dimensional representation
hidden = self.embed(input)
Expand hidden layer to predictions
logits = self.expand(hidden)
return logits

18

Approach: predict if candidate word c is a "neighbor"

1. Treatthe target word t and a neighboring context word c as
positive examples.

2. Randomly sample other words in the lexicon to get negative
examples

3. Use logistic regression to train a classifier to distinguish those
two cases

4. Use the learned weights as the embeddings

19

Word Analogies: word2vec captures dimensions of

similarity as linear relations

Test for linear relationships, examined by Mikolov et al. (2013)

man:woman :: king:?

+ king
- man

+ woman

queen

10.300.70]

0.200.20 |

0.600.30]

[0.70 0.80]

1

0.75

0.5

0.25

gueen

king

we WOMan

xMan

0.25 0.5 0.75 1

20

Word Analogies
[Mikolov et al., 2012, 2013}

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo | Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

-

21

Count based vs. direct prediction

* Fast training * Scales with corpus size
* Efficient usage of statistics * Inefficient usage of statistics
* Long & Sparse! * Short and Dense
* Length = |V| * Length = any hidden size (50-10000)
* most elements are zero * Nearly nothing is zero
* Primarily used to capture word ¢ Generate improved
similarity performance on other tasks

* Disproportionate importance * Can capture complex patterns
given to small counts beyond word similarity

22

Encoding meaning in vector differences

* Key idea:

* Ratios of co-occurrence probabilities can encode meaning components

Probability and Ratio | &k = solid k = gas k = water k = fashion
P(klice) 1.9x 107 6.6 x 107> 3.0x107% 1.7x107°
P(k|steam) 22x10°° '78x10°* 22x102 18%10°
P(klice)/ P(k|steam) 8.9 8.5 x 1072 1.36 0.96

Pennington et al. (2014)
23

Encoding meaning in vector differences

* How can we capture ratios of co-occurrence probabilities as
meaning components in a word vector space?

e Solution: o
* Log-bilinear model: Wi+ Wi = log P(z|_7)
. . Pl(z|a
» with vector differences: w,, - (w, — wp) = log PEm b%

Pennington et al. (2014)

24

GloVe: A new model for learning word representations

P(z|a)
P(x|b)

weighting function biases

Vv
J = Z f (XU') (W?FL’J- + b; +Ej — 1::1gX1-v,-)2
i,j=1

dot product
(similarity)

Coocurrence count
25

https://github.com/noaRricky/pytorch-glove
class GloVeModel(nn.Module):

def __init_ (self, embedding size, context_size, vocab_siz)
self.focal embeddings = nn.Embedding(
vocab_size, embedding size)
self.context_embeddings = nn.Embedding(
vocab_size, embedding size)

self.focal biases = nn.Embedding(vocab_size, 1)
self.context_biases = nn.Embedding(vocab_size, 1)

def loss(self, focal input, context_input, coocurrence_count):

1%
) . ~ P
focal_embed = self.focal_embeddings(focal_input) _ . T'-_) . B
context_embed = self.context_embeddings(context_input) J = f le Wi WJ’ + bl + b} lﬂg Xl_}'
focal_bias = self.focal_biases(focal_input) i,j=1

context_bias = self.context_biases(context_input)

count weight factor
weight factor = torch.pow(coocurrence_count / x_max, alpha)
weight factor[weight factor > 1] =1

embedding_products = torch.sum(focal embed * context_embed, dim=1)
log cooccurrences = torch.log(coocurrence_count)

distance_expr = (embedding products + focal bias +
context_bias + log cooccurrences) ** 2

single losses = weight factor * distance_expr
mean_loss = torch.mean(single losses)
return mean_loss

26

Word Similarities

Nearest words to frog:
frogs

toad

litoria
leptodactylidae
rana

lizard

N Ok 0=

eleutherodactylus

5. rana

7. eleutherodactylus

27

Linear Structures: Visualizations

0.5

0.4

0.3

0.2

0.1

r heiress 7]
:
v J]
g I - countess
- aunt | /" »duchess-
r?isteﬂI [! f.'
- by 4 S »empress
I | / i
. N
i I | © rmadam / " -
I | Co r
| . 1 I}
i - nepHew h:&" L |
' I /! / A
! . j WA ; loar
- | ear ;
| uncle | / rqueern /
! brother | ! I' /{duke
- .I [/ —
.' / . £
i ; / | ‘emperor |
/ f [
i / I
- ! ! | -
r {sir I
L ‘man L king .
| 1 1 | 1 1 1 | | | |
-05 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

28

Linear Structures: Visualizations

0.8

0.4

0.2

-0.6

-0.8

Caterpillar. _
Chrysler.. _ T e
United~ _ _ T e a = B
o S e — —+ Oberhelman
€ g — ~Marchionne
Exxon°———-__h__\\\‘\\ .
T vt Smieelk
Tillerson
TR A R S S SIS SRS S McMillon
Citigroup,
IBM = - == Z=Z===
— === == am— —,Corbat
Rometty
PR e te e e sox i Sameterses ond Dauman
Viacom .McAdam
_ e m 2T =""Colao
Verizone = < — —

Vodafone

-0.8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Linear Structures: Visualizations

DS | I [I I [[|
~ _ — — — slowest
0.4 o ey ST .
_ “slower _ _ _ _ — — —-=shortest
P e i
0.3 -~ _ “’'shorter _
' slow -
-~
-~
short~
0.2 -
01 n
ok _“stronger” ©— T — = — — — — — _ girongest |
/
- _~-Touder — — — — — — — — — -~ _ _ .
strong _ loudest
-0.1 loud_. “"_ _ _ _ _ -
S cleelrei - T T 7 = — — — —clearest
o T RISH T T T T T = = = — «softest
- -
0.2 clear;”“jf'c_iaﬂie'F_“——L——______,dkt |
soft - _ - arkes
dark <
-0.3 | I | I I | | | !
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

30

Analogy evaluation and hyperparameters

Accuracy [%]

72r

70F

68f

66}

64t

62r

60

3 6 9 12 15 18 21 24

Training Time (hrs)

POV amn

GloVe

e SKip-Gram
20 40 . 60 80 100
Iterations (GloVe)
12345 6 7 10 12 15 20

Negative Samples (Skip-Gram)

31

Word Embedding Conclusion

* Developed a model that can translate meaningful relationships
between word-word co-occurrence probabilities into linear
relations in the word vector space.

* GloVe shows the connection between Count! work and Predict!
work —appropriate scaling of counts gives the properties and
performance of Predict! models

32

Quiz

Select all systems and algorithms that involve some vectorized
representation of words:

A. GloVe

B. BERT

C. Lesk’s algorithm
D. word2vec

33

	Slide 1: Vector Semantics
	Slide 2: Announcements
	Slide 3: Representing Data
	Slide 4: Representing Data
	Slide 5: Representing Data
	Slide 6: Representing Textual Data
	Slide 7: Representing Textual Data: Problems
	Slide 8: Distributional similarity based representations
	Slide 9: With distributed, distributional representations, syntactic and semantic information can be captured
	Slide 10: Outline
	Slide 11: Two Kinds of Vectors
	Slide 12: TF-IDF
	Slide 13
	Slide 14: Latent semantic analysis
	Slide 15: Word2vec
	Slide 16: Skip-Gram Training Data
	Slide 17
	Slide 18
	Slide 19: Approach: predict if candidate word c is a "neighbor"
	Slide 20: Word Analogies: word2vec captures dimensions of similarity as linear relations
	Slide 21: Word Analogies [Mikolov et al., 2012, 2013]
	Slide 22: Count based vs. direct prediction
	Slide 23: Encoding meaning in vector differences
	Slide 24: Encoding meaning in vector differences
	Slide 25: GloVe: A new model for learning word representations
	Slide 26
	Slide 27: Word Similarities
	Slide 28: Linear Structures: Visualizations
	Slide 29: Linear Structures: Visualizations
	Slide 30: Linear Structures: Visualizations
	Slide 31: Analogy evaluation and hyperparameters
	Slide 32: Word Embedding Conclusion
	Slide 33: Quiz

