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Announcements

* Guest lecture from Prof. Zhijing Jin on Friday!
* Incoming Prof at UofT CL Group (2025-)
* THE researcher on Causal LLMs for Social Good.

* A1 Extension?
* Vote!
* |f | give you an extension, you give me an extension.
* Slower TA response after the original deadline, potential marking delay.


https://zhijing-jin.com/fantasy/

Representing Data

* Earlier success in computer vision.
* Navlab 5 (Jochem et al., 1995)

* Much more intuitive to convert images into vector representations.



Representing Data

* Numeric Data:
* E.g. credit score:

Give Me Some Credit (gmsc): https://www.kaggle.com/c/GiveMeSomeCredit 4



https://www.kaggle.com/c/GiveMeSomeCredit

Representing Data

* Numeric Data:

* E.g. credit score:
* Images:

* Gray scale or RGB

MNIST dataset
Handwritten numbers



Representing Textual Data

* The vast majority of rule--based and statistical NLP work regarded
words as atomic symbols.  oets the | a | an

Adj - old | red | happy | ..
* Recall Lecture 3:

N - dog | park | ice-cream | contumely | run
V - saw | ate | run | disdained | ..

P > 1in | to | on | under | with | ..}

* Vector space: this is a vector with one 1 and a lot of zeroes:
[0 000000000100 0 9]

* The “one-hot” representation
* i-th word in the dictionary:

UV; — 1,\V/j7éi,f0j — ()



Representing Textual Data: Problems

e There are a lot of words!
* Oxford English Dictionary: 500,000+ entries

 Longman Dictionary of Contemporary English: 230,000 words
* Brysbaert etal. (2016): 42,000 lemmas

° AS a I’eSUlt, a I.Ot Of BIG vecto I’S! + Cosine similarity measures the cosine of
. . the angle between two vectors.
° FOI’ reference, (L)LM dlmenSIOnS: ¢ Inner product normalized by the vector
- BERT, GPT-2: 768 S Loy wa
+ Llama-3-8B: 4096 R TR e
* Llama-3.1-405B: 16384 /b,
* No useful similarity information: P e ~ots

Q =0T, + 0T, + 2T

* Motel: [0 @000 000R0010000]
* Hotel: [0 2000001000000 0] e, e Bl e
* Linguist:[0 1 2 0 0 0020000000 0]

* cos_sim(motel, hotel)=0, cos_sim(motel, linguist)=0, cos_sim(hotel, linguist)=0



Distributional similarity based representations

* You can get a lot of value by representing a word by means of its
neighbors:

e “Noscitur a sociis”

* The meaning of an unclear or ambiguous word should be determined by
considering the words with which it is associated in the context.

* 19th-century rule of interpretation in English civil courts.

* One of the most successful ideas of modern NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 24



With distributed, distributional representations,

syntactic and semantic information can be captured
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[Rohde et al. 2005. An Improved Model of Semantic

Similarity Based on Lexical Co-Occurrence]



Outline

a ke bh-=

Vector space representations of language

Predict! vs. Count!: The GloVe model of word vectors
Wanted: meaning composition functions

Tree-structured Recursive Neural Networks for Semantics
Revisit Transformers
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Two Kinds of Vectors

* Count:
 tf-idf, PMI, LSA
 Sparse!
* |Information Retrieval workhorse!
* Words are represented by (a simple function of) the counts of nearby words

 Predict:

 word2vec, GloVe, BERT, GPT-2, ...
e Dense!

* Representation is created by training a classifier to predict whether a word is
likely to appear nearby

* Contextual embeddings.
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TF-IDF

* Corpus: collection of N documents
* “cherry” & “strawberry vs. “digital” & “information”

* Term frequency:
tf(t, d) = count(t, d)
* Inverse document frequency:

idf(t) = log(N/ / df)\

Size of corpus (N = |D]) number of documents where the term t appers

. tf-idf(t, d) = tf(t, d) * idf(t)
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Example

from sklearn.feature_extraction.text import TfidfVectorizer
import torch
from torch.nn.functional import cosine_similarity as sim

if name_ == ' main_ ':
corpus = ['I did not hit her',
'TI did not',
'Oh hi Mark']

tfidf = TfidfVectorizer(stop words='english')

x = torch.tensor(tfidf.fit_transform(corpus).todense())
fs = tfidf.get feature names out()

print(fs)

print(x)

print(corpus[@], corpus[1l], sim(x[0], x[1], dim=0), sep="\t")
print(corpus[@], corpus[2], sim(x[0], x[2], dim=0), sep="\t")
print(corpus[1l], corpus[2], sim(x[1], x[2], dim=0), sep="\t")

print(fs[0], fs[2], sim(x[:,0], x[:,2], dim=0), sep="\t')
print(fs[1], fs[2], sim(x[:,1], x[:,2], dim=0), sep="\t')
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Latent semantic analysis

LSA: Count!

* Factorize a (maybe weighted, maybe log scaled) term-document
or word-context matrix (Schitze 1992) into UZV?T

* Singular value decomposition (SVD)
* Retain only k singular values, in order to generalize

nnnnnn
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Word2vec

Word2vec CBOW/SkipGram: Predict!

* Train word vectors to try to either

* Predict a word given its bag-of-words
context (CBOW); or

* Predict a context word (position-
independent) from the center word

* Update word vectors until they can
do this prediction well

Input projection  output
w(t-2
‘ (t-2)
< w(t-1)
wi(t) >
4 w(t+1)

«  W(t+2)
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Skip-Gram Training Data

* Assume a +/- 2 word window, given training sentence:

..lemon, a [tablespoon of apricot jam, a] pinch
cl c2 [target] c3 c4

* Goal: train a classifier that is given a candidate (word, context)
pair
* And assigns each pair a probability:
* P(+|w, c)
* P(=lw, c) =1 - P(+|w, c)

16



o ] Output Layer
Word2vec training regimen Softmax Classifier

H Idden Layer Probability that the word at a
Linear Neurons randomly chosen, nearby
Input Vector position is “abandon”
: (2
0
0 ’ ... “ability”
0
0 \
: ok 2
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corresponding to the —#» n \
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0
0
A
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10,000 :
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class Word2Vec(nn.Module):

def _ init (self, vocab_size, embedding size):
super(). init_ ()
self.embed = nn.Embedding(vocab _size, embedding size)
self.expand = nn.Linear(embedding size, vocab_size, bias=False)

def forward(self, input):
# Encode input to lower-dimensional representation
hidden = self.embed(input)
# Expand hidden layer to predictions
logits = self.expand(hidden)
return logits

18



Approach: predict if candidate word c is a "neighbor"

1. Treatthe target word t and a neighboring context word c as
positive examples.

2. Randomly sample other words in the lexicon to get negative
examples

3. Use logistic regression to train a classifier to distinguish those
two cases

4. Use the learned weights as the embeddings

19



Word Analogies: word2vec captures dimensions of

similarity as linear relations

Test for linear relationships, examined by Mikolov et al. (2013)

man:woman :: king:?
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- man

+ woman

queen
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Word Analogies
[Mikolov et al., 2012, 2013}

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo | Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

-
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Count based vs. direct prediction

* Fast training * Scales with corpus size
* Efficient usage of statistics * Inefficient usage of statistics
* Long & Sparse! * Short and Dense
* Length = |V| * Length = any hidden size (50-10000)
* most elements are zero * Nearly nothing is zero
* Primarily used to capture word ¢ Generate improved
similarity performance on other tasks

* Disproportionate importance * Can capture complex patterns
given to small counts beyond word similarity

22



Encoding meaning in vector differences

* Key idea:

* Ratios of co-occurrence probabilities can encode meaning components

Probability and Ratio | &k = solid k = gas k = water k = fashion
P(klice) 1.9x 107 6.6 x 107> 3.0x107% 1.7x107°
P(k|steam) 22x10°° '78x10°* 22x102 18%10°
P(klice)/ P(k|steam) 8.9 8.5 x 1072 1.36 0.96

Pennington et al. (2014)
23



Encoding meaning in vector differences

* How can we capture ratios of co-occurrence probabilities as
meaning components in a word vector space?

e Solution: o
* Log-bilinear model: Wi+ Wi = log P(z|_7)
. . Pl(z|a
» with vector differences: w,, - (w, — wp) = log PEm b%

Pennington et al. (2014)

24



GloVe: A new model for learning word representations

P(z|a)
P(x|b)

weighting function biases

Vv
J = Z f (XU') (W?FL’J- + b; +Ej — 1::1gX1-v,-)2
i,j=1

dot product
(similarity)

Coocurrence count
25



# https://github.com/noaRricky/pytorch-glove
class GloVeModel(nn.Module):

def __init_ (self, embedding size, context_size, vocab_siz)
self.focal embeddings = nn.Embedding(
vocab_size, embedding size)
self.context_embeddings = nn.Embedding(
vocab_size, embedding size)

self.focal biases = nn.Embedding(vocab_size, 1)
self.context_biases = nn.Embedding(vocab_size, 1)

def loss(self, focal input, context_input, coocurrence_count):

1%
) . ~ P
focal_embed = self.focal_embeddings(focal_input) _ . T'-_ ) . B
context_embed = self.context_embeddings(context_input) J = f le Wi WJ’ + bl + b} lﬂg Xl_}'
focal_bias = self.focal_biases(focal_input) i,j=1

context_bias = self.context_biases(context_input)

# count weight factor
weight factor = torch.pow(coocurrence_count / x_max, alpha)
weight factor[weight factor > 1] =1

embedding_products = torch.sum(focal embed * context_embed, dim=1)
log cooccurrences = torch.log(coocurrence_count)

distance_expr = (embedding products + focal bias +
context_bias + log cooccurrences) ** 2

single losses = weight factor * distance_expr
mean_loss = torch.mean(single losses)
return mean_loss
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Word Similarities

Nearest words to frog:
frogs

toad

litoria
leptodactylidae
rana

lizard

N Ok 0=

eleutherodactylus

5. rana

7. eleutherodactylus
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Linear Structures: Visualizations
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Linear Structures: Visualizations
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Linear Structures: Visualizations
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Analogy evaluation and hyperparameters

Accuracy [%]
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Word Embedding Conclusion

* Developed a model that can translate meaningful relationships
between word-word co-occurrence probabilities into linear
relations in the word vector space.

* GloVe shows the connection between Count! work and Predict!
work —appropriate scaling of counts gives the properties and
performance of Predict! models

32



Quiz

Select all systems and algorithms that involve some vectorized
representation of words:

A. GloVe

B. BERT

C. Lesk’s algorithm
D. word2vec

33
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