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Announcements

• Guest lecture from Prof. Zhijing Jin on Friday!
• Incoming Prof at UofT CL Group (2025-)
• THE researcher on Causal LLMs for Social Good.

• A1 Extension?
• Vote!
• If I give you an extension, you give me an extension.
• Slower TA response after the original deadline, potential marking delay.
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https://zhijing-jin.com/fantasy/


Representing Data

• Earlier success in computer vision.
• Navlab 5 (Jochem et al., 1995)

• Much more intuitive to convert images into vector representations.
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Representing Data

• Numeric Data:
• E.g. credit score:

Monthly 
Income

Number Of Open 
Credit Lines And 

Loans

Number Of 
Times 90 Days 

Late

Number Real 
Estate Loans Or 

Lines
Number Of Time 60-89 

Days Past Due Not Worse
Number Of 

Dependents
9120 13 0 6 0 2
2600 4 0 0 0 1
3042 2 1 0 0 0
3300 5 0 0 0 0

63588 7 0 1 0 0
3500 3 0 1 0 1

NA 8 0 3 0 0
3500 8 0 0 0 0

Give Me Some Credit (gmsc): https://www.kaggle.com/c/GiveMeSomeCredit 4

https://www.kaggle.com/c/GiveMeSomeCredit


Representing Data

• Numeric Data:
• E.g. credit score:

• Images:
• Gray scale or RGB

MNIST dataset
Handwritten numbers 5



Representing Textual Data

• The vast majority of rule-‐based and statistical NLP work regarded 
words as atomic symbols.
• Recall Lecture 3:

• Vector space: this is a vector with one 1 and a lot of zeroes:
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

• The “one-hot” representation
• i-th word in the dictionary:
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Representing Textual Data: Problems

• There are a lot of words!
• Oxford English Dictionary: 500,000+ entries
• Longman Dictionary of Contemporary English: 230,000 words
• Brysbaert et al. (2016): 42,000 lemmas

• As a result, a lot of BIG vectors!
• For reference, (L)LM dimensions:

• BERT, GPT-2: 768
• Llama-3-8B: 4096
• Llama-3.1-405B: 16384

• No useful similarity information:
• Motel:     [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
• Hotel:     [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
• Linguist:[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

• cos_sim(motel, hotel)=0, cos_sim(motel, linguist)=0, cos_sim(hotel, linguist)=0 
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Distributional similarity based representations

• You can get a lot of value by representing a word by means of its 
neighbors:

• “Noscitur a sociis”
• The meaning of an unclear or ambiguous word should be determined by 

considering the words with which it is associated in the context.
• 19th-century rule of interpretation in English civil courts.

• One of the most successful ideas of modern NLP
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With distributed, distributional representations, 
syntactic and semantic information can be captured
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Outline

1. Vector space representations of language
2. Predict! vs. Count!: The GloVe model of word vectors
3. Wanted: meaning composition functions
4. Tree-structured Recursive Neural Networks for Semantics
5. Revisit Transformers
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Two Kinds of Vectors

• Count:
• tf-idf, PMI, LSA
• Sparse!
• Information Retrieval workhorse!
• Words are represented by (a simple function of) the counts of nearby words

• Predict:
• word2vec, GloVe, BERT, GPT-2, …
• Dense!
• Representation is created by training a classifier to predict whether a word is 

likely to appear nearby
• Contextual embeddings.
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TF-IDF

• Corpus: collection of N documents
• “cherry” & “strawberry vs. “digital” & “information”

• Term frequency:
tf(t, d) = count(t, d)

• Inverse document frequency:
idf(t) = log(N / df)

• tf-idf(t, d) = tf(t, d) * idf(t)
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Size of corpus (N = |D|) number of documents where the term t appers
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from sklearn.feature_extraction.text import TfidfVectorizer
import torch
from torch.nn.functional import cosine_similarity as sim

if __name__ == '__main__':
  corpus = ['I did not hit her', 
       'I did not', 
       'Oh hi Mark']

  tfidf = TfidfVectorizer(stop_words='english')
  x = torch.tensor(tfidf.fit_transform(corpus).todense())
  fs = tfidf.get_feature_names_out()
  print(fs)
  print(x)

  print(corpus[0], corpus[1], sim(x[0], x[1], dim=0), sep='\t')
  print(corpus[0], corpus[2], sim(x[0], x[2], dim=0), sep='\t')
  print(corpus[1], corpus[2], sim(x[1], x[2], dim=0), sep='\t')

  print(fs[0], fs[2], sim(x[:,0], x[:,2], dim=0), sep='\t')
  print(fs[1], fs[2], sim(x[:,1], x[:,2], dim=0), sep='\t')

Example



Latent semantic analysis

LSA: Count!
• Factorize a (maybe weighted, maybe log scaled) term-document 

or word-context matrix (Schütze 1992) into UΣVT

• Singular value decomposition (SVD)

• Retain only k singular values, in order to generalize
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Word2vec

Word2vec CBOW/SkipGram: Predict!
• Train word vectors to try to either

• Predict a word given its bag-of-words 
context (CBOW); or

• Predict a context word (position-
independent) from the center word

• Update word vectors until they can 
do this prediction well
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Skip-Gram Training Data 

• Assume a +/- 2 word window, given training sentence: 

…lemon, a [tablespoon of apricot jam, a] pinch

    c1   c2 [target] c3  c4

• Goal: train a classifier that is given a candidate (word, context) 
pair

• And assigns each pair a probability:
• P(+|w, c)
• P(−|w, c) = 1 − P(+|w, c)
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Word2vec training regimen
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class Word2Vec(nn.Module):

  def __init__(self, vocab_size, embedding_size):
    super().__init__()
    self.embed = nn.Embedding(vocab_size, embedding_size)
    self.expand = nn.Linear(embedding_size, vocab_size, bias=False)

  def forward(self, input):
    # Encode input to lower-dimensional representation
    hidden = self.embed(input)
    # Expand hidden layer to predictions
    logits = self.expand(hidden)
    return logits



Approach: predict if candidate word c is a "neighbor" 

1. Treat the target word t and a neighboring context word c as 
positive examples. 

2. Randomly sample other words in the lexicon to get negative 
examples

3. Use logistic regression to train a classifier to distinguish those 
two cases

4. Use the learned weights as the embeddings
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Word Analogies: word2vec captures dimensions of 
similarity as linear relations
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Test for linear relationships, examined by Mikolov et al. (2013)



Word Analogies
[Mikolov et al., 2012, 2013]
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Count based vs. direct prediction

• Fast training
• Efficient usage of statistics

• Long & Sparse!
• Length = |V|
• most elements are zero

• Primarily used to capture word 
similarity

• Disproportionate importance 
given to small counts

• Scales with corpus size
• Inefficient usage of statistics

• Short and Dense
• Length = any hidden size (50-10000)

• Nearly nothing is zero
• Generate improved 

performance on other tasks
• Can capture complex patterns 

beyond word similarity
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Encoding meaning in vector differences

• Key idea:
• Ratios of co-occurrence probabilities can encode meaning components
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Pennington et al. (2014)



Encoding meaning in vector differences

• How can we capture ratios of co-occurrence probabilities as 
meaning components in a word vector space?

• Solution:
• Log-bilinear model:

• with vector differences:

24
Pennington et al. (2014)



GloVe: A new model for learning word representations
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dot product
(similarity)

weighting function biases

Coocurrence count
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# https://github.com/noaRricky/pytorch-glove
class GloVeModel(nn.Module):

  def __init__(self, embedding_size, context_size, vocab_siz)
    self.focal_embeddings = nn.Embedding(
      vocab_size, embedding_size)
    self.context_embeddings = nn.Embedding(
      vocab_size, embedding_size)

    self.focal_biases = nn.Embedding(vocab_size, 1)
    self.context_biases = nn.Embedding(vocab_size, 1)

  def loss(self, focal_input, context_input, coocurrence_count):

    focal_embed = self.focal_embeddings(focal_input)
    context_embed = self.context_embeddings(context_input)
    focal_bias = self.focal_biases(focal_input)
    context_bias = self.context_biases(context_input)

    # count weight factor
    weight_factor = torch.pow(coocurrence_count / x_max, alpha)
    weight_factor[weight_factor > 1] = 1

    embedding_products = torch.sum(focal_embed * context_embed, dim=1)
    log_cooccurrences = torch.log(coocurrence_count)

    distance_expr = (embedding_products + focal_bias +
            context_bias + log_cooccurrences) ** 2

    single_losses = weight_factor * distance_expr
    mean_loss = torch.mean(single_losses)
    return mean_loss



Word Similarities

Nearest words to frog:
1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus
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Linear Structures: Visualizations
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Linear Structures: Visualizations
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Linear Structures: Visualizations
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Analogy evaluation and hyperparameters
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Word Embedding Conclusion

• Developed a model that can translate meaningful relationships 
between word-word co-occurrence probabilities into linear 
relations in the word vector space.

• GloVe shows the connection between Count! work and Predict! 
work – appropriate scaling of counts gives the properties and 
performance of Predict! models
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Quiz

Select all systems and algorithms that involve some vectorized 
representation of words:
A. GloVe
B. BERT
C. Lesk’s algorithm
D. word2vec
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