
Vector
Semantics

CSC485
Lecture 10

1

Announcements

• Guest lecture from Prof. Zhijing Jin on Friday!
• Incoming Prof at UofT CL Group (2025-)
• THE researcher on Causal LLMs for Social Good.

• A1 Extension?
• Vote!
• If I give you an extension, you give me an extension.
• Slower TA response after the original deadline, potential marking delay.

2

https://zhijing-jin.com/fantasy/

Representing Data

• Earlier success in computer vision.
• Navlab 5 (Jochem et al., 1995)

• Much more intuitive to convert images into vector representations.

3

Representing Data

• Numeric Data:
• E.g. credit score:

Monthly
Income

Number Of Open
Credit Lines And

Loans

Number Of
Times 90 Days

Late

Number Real
Estate Loans Or

Lines
Number Of Time 60-89

Days Past Due Not Worse
Number Of

Dependents
9120 13 0 6 0 2
2600 4 0 0 0 1
3042 2 1 0 0 0
3300 5 0 0 0 0

63588 7 0 1 0 0
3500 3 0 1 0 1

NA 8 0 3 0 0
3500 8 0 0 0 0

Give Me Some Credit (gmsc): https://www.kaggle.com/c/GiveMeSomeCredit 4

https://www.kaggle.com/c/GiveMeSomeCredit

Representing Data

• Numeric Data:
• E.g. credit score:

• Images:
• Gray scale or RGB

MNIST dataset
Handwritten numbers 5

Representing Textual Data

• The vast majority of rule-‐based and statistical NLP work regarded
words as atomic symbols.
• Recall Lecture 3:

• Vector space: this is a vector with one 1 and a lot of zeroes:
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

• The “one-hot” representation
• i-th word in the dictionary:

6

Representing Textual Data: Problems

• There are a lot of words!
• Oxford English Dictionary: 500,000+ entries
• Longman Dictionary of Contemporary English: 230,000 words
• Brysbaert et al. (2016): 42,000 lemmas

• As a result, a lot of BIG vectors!
• For reference, (L)LM dimensions:

• BERT, GPT-2: 768
• Llama-3-8B: 4096
• Llama-3.1-405B: 16384

• No useful similarity information:
• Motel: [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
• Hotel: [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
• Linguist:[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

• cos_sim(motel, hotel)=0, cos_sim(motel, linguist)=0, cos_sim(hotel, linguist)=0

7

Distributional similarity based representations

• You can get a lot of value by representing a word by means of its
neighbors:

• “Noscitur a sociis”
• The meaning of an unclear or ambiguous word should be determined by

considering the words with which it is associated in the context.
• 19th-century rule of interpretation in English civil courts.

• One of the most successful ideas of modern NLP

8

With distributed, distributional representations,
syntactic and semantic information can be captured

9

Outline

1. Vector space representations of language
2. Predict! vs. Count!: The GloVe model of word vectors
3. Wanted: meaning composition functions
4. Tree-structured Recursive Neural Networks for Semantics
5. Revisit Transformers

10

Two Kinds of Vectors

• Count:
• tf-idf, PMI, LSA
• Sparse!
• Information Retrieval workhorse!
• Words are represented by (a simple function of) the counts of nearby words

• Predict:
• word2vec, GloVe, BERT, GPT-2, …
• Dense!
• Representation is created by training a classifier to predict whether a word is

likely to appear nearby
• Contextual embeddings.

11

TF-IDF

• Corpus: collection of N documents
• “cherry” & “strawberry vs. “digital” & “information”

• Term frequency:
tf(t, d) = count(t, d)

• Inverse document frequency:
idf(t) = log(N / df)

• tf-idf(t, d) = tf(t, d) * idf(t)

12

Size of corpus (N = |D|) number of documents where the term t appers

13

from sklearn.feature_extraction.text import TfidfVectorizer
import torch
from torch.nn.functional import cosine_similarity as sim

if __name__ == '__main__':
 corpus = ['I did not hit her',
 'I did not',
 'Oh hi Mark']

 tfidf = TfidfVectorizer(stop_words='english')
 x = torch.tensor(tfidf.fit_transform(corpus).todense())
 fs = tfidf.get_feature_names_out()
 print(fs)
 print(x)

 print(corpus[0], corpus[1], sim(x[0], x[1], dim=0), sep='\t')
 print(corpus[0], corpus[2], sim(x[0], x[2], dim=0), sep='\t')
 print(corpus[1], corpus[2], sim(x[1], x[2], dim=0), sep='\t')

 print(fs[0], fs[2], sim(x[:,0], x[:,2], dim=0), sep='\t')
 print(fs[1], fs[2], sim(x[:,1], x[:,2], dim=0), sep='\t')

Example

Latent semantic analysis

LSA: Count!
• Factorize a (maybe weighted, maybe log scaled) term-document

or word-context matrix (Schütze 1992) into UΣVT

• Singular value decomposition (SVD)

• Retain only k singular values, in order to generalize

14

Word2vec

Word2vec CBOW/SkipGram: Predict!
• Train word vectors to try to either

• Predict a word given its bag-of-words
context (CBOW); or

• Predict a context word (position-
independent) from the center word

• Update word vectors until they can
do this prediction well

15

Skip-Gram Training Data

• Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of apricot jam, a] pinch

 c1 c2 [target] c3 c4

• Goal: train a classifier that is given a candidate (word, context)
pair

• And assigns each pair a probability:
• P(+|w, c)
• P(−|w, c) = 1 − P(+|w, c)

16

17

Word2vec training regimen

18

class Word2Vec(nn.Module):

 def __init__(self, vocab_size, embedding_size):
 super().__init__()
 self.embed = nn.Embedding(vocab_size, embedding_size)
 self.expand = nn.Linear(embedding_size, vocab_size, bias=False)

 def forward(self, input):
 # Encode input to lower-dimensional representation
 hidden = self.embed(input)
 # Expand hidden layer to predictions
 logits = self.expand(hidden)
 return logits

Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c as
positive examples.

2. Randomly sample other words in the lexicon to get negative
examples

3. Use logistic regression to train a classifier to distinguish those
two cases

4. Use the learned weights as the embeddings

19

Word Analogies: word2vec captures dimensions of
similarity as linear relations

20

Test for linear relationships, examined by Mikolov et al. (2013)

Word Analogies
[Mikolov et al., 2012, 2013]

21

Count based vs. direct prediction

• Fast training
• Efficient usage of statistics

• Long & Sparse!
• Length = |V|
• most elements are zero

• Primarily used to capture word
similarity

• Disproportionate importance
given to small counts

• Scales with corpus size
• Inefficient usage of statistics

• Short and Dense
• Length = any hidden size (50-10000)

• Nearly nothing is zero
• Generate improved

performance on other tasks
• Can capture complex patterns

beyond word similarity

22

Encoding meaning in vector differences

• Key idea:
• Ratios of co-occurrence probabilities can encode meaning components

23
Pennington et al. (2014)

Encoding meaning in vector differences

• How can we capture ratios of co-occurrence probabilities as
meaning components in a word vector space?

• Solution:
• Log-bilinear model:

• with vector differences:

24
Pennington et al. (2014)

GloVe: A new model for learning word representations

25

dot product
(similarity)

weighting function biases

Coocurrence count

26

https://github.com/noaRricky/pytorch-glove
class GloVeModel(nn.Module):

 def __init__(self, embedding_size, context_size, vocab_siz)
 self.focal_embeddings = nn.Embedding(
 vocab_size, embedding_size)
 self.context_embeddings = nn.Embedding(
 vocab_size, embedding_size)

 self.focal_biases = nn.Embedding(vocab_size, 1)
 self.context_biases = nn.Embedding(vocab_size, 1)

 def loss(self, focal_input, context_input, coocurrence_count):

 focal_embed = self.focal_embeddings(focal_input)
 context_embed = self.context_embeddings(context_input)
 focal_bias = self.focal_biases(focal_input)
 context_bias = self.context_biases(context_input)

 # count weight factor
 weight_factor = torch.pow(coocurrence_count / x_max, alpha)
 weight_factor[weight_factor > 1] = 1

 embedding_products = torch.sum(focal_embed * context_embed, dim=1)
 log_cooccurrences = torch.log(coocurrence_count)

 distance_expr = (embedding_products + focal_bias +
 context_bias + log_cooccurrences) ** 2

 single_losses = weight_factor * distance_expr
 mean_loss = torch.mean(single_losses)
 return mean_loss

Word Similarities

Nearest words to frog:
1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus

27

Linear Structures: Visualizations

28

Linear Structures: Visualizations

29

Linear Structures: Visualizations

30

Analogy evaluation and hyperparameters

31

Word Embedding Conclusion

• Developed a model that can translate meaningful relationships
between word-word co-occurrence probabilities into linear
relations in the word vector space.

• GloVe shows the connection between Count! work and Predict!
work – appropriate scaling of counts gives the properties and
performance of Predict! models

32

Quiz

Select all systems and algorithms that involve some vectorized
representation of words:
A. GloVe
B. BERT
C. Lesk’s algorithm
D. word2vec

33

	Slide 1: Vector Semantics
	Slide 2: Announcements
	Slide 3: Representing Data
	Slide 4: Representing Data
	Slide 5: Representing Data
	Slide 6: Representing Textual Data
	Slide 7: Representing Textual Data: Problems
	Slide 8: Distributional similarity based representations
	Slide 9: With distributed, distributional representations, syntactic and semantic information can be captured
	Slide 10: Outline
	Slide 11: Two Kinds of Vectors
	Slide 12: TF-IDF
	Slide 13
	Slide 14: Latent semantic analysis
	Slide 15: Word2vec
	Slide 16: Skip-Gram Training Data
	Slide 17
	Slide 18
	Slide 19: Approach: predict if candidate word c is a "neighbor"
	Slide 20: Word Analogies: word2vec captures dimensions of similarity as linear relations
	Slide 21: Word Analogies [Mikolov et al., 2012, 2013]
	Slide 22: Count based vs. direct prediction
	Slide 23: Encoding meaning in vector differences
	Slide 24: Encoding meaning in vector differences
	Slide 25: GloVe: A new model for learning word representations
	Slide 26
	Slide 27: Word Similarities
	Slide 28: Linear Structures: Visualizations
	Slide 29: Linear Structures: Visualizations
	Slide 30: Linear Structures: Visualizations
	Slide 31: Analogy evaluation and hyperparameters
	Slide 32: Word Embedding Conclusion
	Slide 33: Quiz

