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Terminology Hell
• “Embedding”

• Embedding layer:   torch.nn.Embedding
• Linear layer: one hot index -> vectorized representation
• Basically, a big look up table

• Vector(ized) Representation
• Using an n-dim vector to represent a word. The vector.

• Hidden Representation; Hidden State
• The intermediate output of a neural network
• Neural LM: use this as the vectorized representation

• Word Embedding:
• The model/system/algorithm that generate a vectorized representation given a word.

• Word Embedding:
• The generated vectorized representation.
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The Corporate B.S. Generator

WSD!

https://www.atrixnet.com/bs-generator.html?bullshit=Word+embedding


Contextual vs. Global Word Embedding

• Global Word Embedding
• One vector representation word-type
• word2vec, GloVe

• Contextual Word Embedding
• One vector representation word-token
• RNN, LSTM, BERT, GPT…
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Lecture 3: Primitives: lexical categories or parts 
of speech. 
• Each word-type is a member of one or more.
• Each word-token is an instance of exactly one.
 



The Language Modelling Pipeline

• Collect large quantity of unstructured data
• Wikipedia articles, social media post, news articles…
• Famous open-source: WikiText-2/103 (100M Tokens), Dolma (3T tokens)

• Tokenization
• The University of Toronto (UToronto or U of T) is a public research university in 

Toronto, Ontario, Canada, located on the grounds that surround Queen's Park.

• ['The', 'ĠUniversity', 'Ġof', 'ĠToronto', 'Ġ(', 'UT', 'or', 'onto', 'Ġor', 'ĠU', 
'Ġof', 'ĠT', ')', 'Ġis', 'Ġa', 'Ġpublic', 'Ġresearch', 'Ġuniversity', 'Ġin', 
'ĠToronto', ',', 'ĠOntario', ',', 'ĠCanada', ',', 'Ġlocated', 'Ġon', 'Ġthe', 
'Ġgrounds', 'Ġthat', 'Ġsurround', 'ĠQueen', "'s", 'ĠPark', '.’]

• Perform Language Modelling Task:
• Next Word Prediction, Masked Language Modelling,  …
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Tokenization and Tokenizers

• Character-level language modeling:
• Classifying Names with a Character-Level RNN [Pytorch Tutorial]
• Good with Chinese
• Other languages: inefficient use of data

• Tokenization: breaks down text into smaller units, often called tokens.
• text.split()

• The only difficulty: unknown token.
• Special <unk> token
 #longexposurephotography Rechtsschutzversicherungsgesellschaft
 Long exposure photography Rechts Schutz Versicherung s Gesellschaft
     legal protection insurance company
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https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial


Tokenization and Tokenizers
• Solution: Break a word down into word pieces! 
• Slightly different encoding styles

colorless green ideas sleep furiously
• BERT: 'color', '##less', 'green', 'ideas', 'sleep', 'furiously’
• GPT/LLaMA: 'color', 'less', 'Ġgreen', 'Ġideas', 'Ġsleep', 'Ġfuriously’
• XLM: 'color', 'less</w>', 'green</w>', 'ideas</w>', 'sleep</w>', 'furiously</w>’

• Algorithms: see this tutorial
• Train with a large corpus
• Byte pair encoding (BPE):

• break everything down into characters
• merge the most frequent pairs
• repeat until vocab size reached.

• Wordpiece:
• Score = (freq_of_pair)/(freq_of_first_element × freq_of_second_element)
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https://huggingface.co/learn/nlp-course/en/chapter6/6


Contextual Word Embedding

• Recurrent neural network (RNN)
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class RNN(nn.Module):
  
  def __init__(self, input_size, hidden_size, output_size):
    # i: input token, h: hidden state, o: output 
    self.i2h = nn.Embedding(input_size, hidden_size)
    self.h2h = nn.Linear(hidden_size, hidden_size)
    self.h2o = nn.Linear(hidden_size, output_size) # output_size: number of labels

  def forward(self, x, hidden_state):
    x = self.i2h(x)
    hidden_state = self.h2h(hidden_state)
    hidden_state = torch.tanh(x + hidden_state)
    out = self.h2o(hidden_state)
    return out, hidden_state



Recall: Language Modelling Task

• Final goal: predict/estimate the probability of a sequence

• Actual task:
• Predict the next word
• MLM

• In a perfect world:
• The RNN hidden states should be able capture all contextual information
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Probability( Some sentence over here. )



Reality
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Also, we need more! What of larger semantic units?

• How can we know when larger units are similar in meaning?
• CTV News: Poilievre-led attempt to bring down Trudeau minority over 

carbon tax fails.
• CBC News: Liberals survive non-confidence vote on carbon tax with 

Bloc, NDP backing.
• The Beaverton: Co-worker that everyone hates surprised he can’t get 

colleagues to do what he wants.
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RNN & next word prediction:
Not good compositional representation
• Next word prediction:

• The hidden state i is encoding information of everything from the 
beginning (index 0) to the very end (index i).

• We want some bigger semantic units
• Poilievre-led attempt to bring down Trudeau minority over carbon tax fails.

• Some hacks may work, but not really
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Also, we need more! What of larger semantic units?

• How can we know when larger units are similar in meaning?
• CTV News: Poilievre-led attempt to bring down Trudeau minority over 

carbon tax fails.
• CBC News: Liberals survive non-confidence vote on carbon tax with 

Bloc, NDP backing.
• The Beaverton: Co-worker that everyone hates surprised he can’t get 

colleagues to do what he wants.

People interpret the meaning of larger text units
– entities, descriptive terms, facts, arguments, stories – 

by semantic composition of smaller elements.
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Representing Phrases as Vectors

• Vector for single words are useful as features but limited.
• the country of my birth
• the place where I was born

• Can we extend the ideas of word vector spaces to phrases?
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Understand Larger Semantic Units
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• Use the principle of compositionality!
• The meaning (vector) of a sentence is 

determined by:
1. the meanings of its words
2. a method that combine them.
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Tree RNNs
• Basic computational unit:

• Recursive Neural Network
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Goller & Küchler 1996,
Costa et al. 2003,
Socher et al. ICML, 2011.



Version 1: Simple concatenation Tree RNN

• Only a single weight matrix = composition function!
• No real interaction between the input words!
• Not adequate for human language composition function
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Version 2: PCFG + Syntactically-United RNN
• Idea: Condition the composition function on the syntactic 

categories, “untie the weights.”
• Allows for different composition functions for pairs of syntactic 

categories, e.g. Adv + AdjP, VP + NP.
• Combines discrete syntactic categories with continuous semantic 

information.
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SU-RNN: Learns a soft version of head words
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Head words get bigger weights in the matrices



More versions!

• Version 4: Recursive Neural Tensor Network
• Version 5: Tree-Structured Long Short-Term Memory Networks
• …
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Natural Language Inference

• Can we tell if one piece of text follows from another?
• Poilievre-led attempt to bring down Trudeau minority over carbon tax fails.
• Liberals survive non-confidence vote on carbon tax with Bloc, NDP backing.

• Natural Language Inference = Recognizing Textual Entailment
[Dagan 2005, MacCartney & Manning, 2009]
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NLI: The Task

James Byron Dean refused to move without blue jeans

{entails, contradicts, neither}

James Dean didn’t dance without pants
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NLI: The Task

Simple task to define, but engages the full complexity of compositional 
semantics:
• Lexical entailment
• Quantification
• Coreference
• Lexical/scope ambiguity
• Commonsense knowledge
• Propositional atittudes
• Modality
• Factivity and implicativity
• …
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Natural logic: relations
• Seven possible relations between phrases/sentences:
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Natural logic: relation joins
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Can our NNs learn to make these inferences
over pairs of embedding vectors?



A minimal NN for lexical relations
[Bowman 2014]

• Words are learned embedding 
vectors.

• One plain TreeRNN or TreeRNTN layer
• Softmax emits relation labels
• Learn everything with SGD.
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Lexical relations: results

• Both models tuned, then trained to convergence on five randomly 
generated datasets

• Reported figures: % correct (macroaveraged F1)
• Both NNs used 15d embeddings, 75d comparison layer
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Transformers
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Transformer

• Attention is All You Need
• Key, Query, Value… from Lecture 2
• Each token’s representation: 

weighted sum of other token’s 
representation.

• Soft “syntactic” structure!
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BertViz demo

https://github.com/jessevig/bertviz


Soft Syntactic Structure
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???

More when we reach interpretability:
Spoil alert: Transformers learn some soft syntactic structure, 

but nothing like formal, human syntax as we understood.



Sentence Embedding
• MEAN: take the average of all word 

embeddings
• MAX: take the maximum value 

along every dimension
• CLS: Use the embedding of the 

CLS token
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The capital city of Canada is Ottawa[CLS]

The capital city of Canada is Ottawa[CLS]

BERT

embeddings

tokens

Pooling: MEAN, MAX, CLS*



Sentence-BERT
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SimCSE: Contrastive Learning
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Why is BERT great?

• All NLP task:
• One of these four cases
• Or some clever 

adaptation (Assignment 
1 Q1/2)

• Very good result!
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Build me an NLP 
application.
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import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer

if __name__ == '__main__':
  dataset = load_dataset("yelp_review_full")
  tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

  def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)

  tokenized_datasets = dataset.map(tokenize_function, batched=True)
  model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)

  def acc(eval_pred):
    logits, labels = eval_pred
    predictions = torch.argmax(logits, dim=-1)
    return (predictions == labels).sum().item() / len(labels)

  training_args = TrainingArguments(output_dir="test_trainer", report_to=None)

  trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["test"],
    compute_metrics=acc,
  )

  trainer.train()
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NOW, ENJOY YOUR
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