
Vector
Semantics II

CSC485
Lecture 11

1

Terminology Hell
• “Embedding”

• Embedding layer: torch.nn.Embedding
• Linear layer: one hot index -> vectorized representation
• Basically, a big look up table

• Vector(ized) Representation
• Using an n-dim vector to represent a word. The vector.

• Hidden Representation; Hidden State
• The intermediate output of a neural network
• Neural LM: use this as the vectorized representation

• Word Embedding:
• The model/system/algorithm that generate a vectorized representation given a word.

• Word Embedding:
• The generated vectorized representation.

2

The Corporate B.S. Generator

WSD!

https://www.atrixnet.com/bs-generator.html?bullshit=Word+embedding

Contextual vs. Global Word Embedding

• Global Word Embedding
• One vector representation word-type
• word2vec, GloVe

• Contextual Word Embedding
• One vector representation word-token
• RNN, LSTM, BERT, GPT…

3

Lecture 3: Primitives: lexical categories or parts
of speech.
• Each word-type is a member of one or more.
• Each word-token is an instance of exactly one.

The Language Modelling Pipeline

• Collect large quantity of unstructured data
• Wikipedia articles, social media post, news articles…
• Famous open-source: WikiText-2/103 (100M Tokens), Dolma (3T tokens)

• Tokenization
• The University of Toronto (UToronto or U of T) is a public research university in

Toronto, Ontario, Canada, located on the grounds that surround Queen's Park.

• ['The', 'ĠUniversity', 'Ġof', 'ĠToronto', 'Ġ(', 'UT', 'or', 'onto', 'Ġor', 'ĠU',
'Ġof', 'ĠT', ')', 'Ġis', 'Ġa', 'Ġpublic', 'Ġresearch', 'Ġuniversity', 'Ġin',
'ĠToronto', ',', 'ĠOntario', ',', 'ĠCanada', ',', 'Ġlocated', 'Ġon', 'Ġthe',
'Ġgrounds', 'Ġthat', 'Ġsurround', 'ĠQueen', "'s", 'ĠPark', '.’]

• Perform Language Modelling Task:
• Next Word Prediction, Masked Language Modelling, …

4

Tokenization and Tokenizers

• Character-level language modeling:
• Classifying Names with a Character-Level RNN [Pytorch Tutorial]
• Good with Chinese
• Other languages: inefficient use of data

• Tokenization: breaks down text into smaller units, often called tokens.
• text.split()

• The only difficulty: unknown token.
• Special <unk> token
 #longexposurephotography Rechtsschutzversicherungsgesellschaft
 Long exposure photography Rechts Schutz Versicherung s Gesellschaft
 legal protection insurance company

5

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial

Tokenization and Tokenizers
• Solution: Break a word down into word pieces!
• Slightly different encoding styles

colorless green ideas sleep furiously
• BERT: 'color', '##less', 'green', 'ideas', 'sleep', 'furiously’
• GPT/LLaMA: 'color', 'less', 'Ġgreen', 'Ġideas', 'Ġsleep', 'Ġfuriously’
• XLM: 'color', 'less</w>', 'green</w>', 'ideas</w>', 'sleep</w>', 'furiously</w>’

• Algorithms: see this tutorial
• Train with a large corpus
• Byte pair encoding (BPE):

• break everything down into characters
• merge the most frequent pairs
• repeat until vocab size reached.

• Wordpiece:
• Score = (freq_of_pair)/(freq_of_first_element × freq_of_second_element)

6

https://huggingface.co/learn/nlp-course/en/chapter6/6

Contextual Word Embedding

• Recurrent neural network (RNN)

7

8

class RNN(nn.Module):

 def __init__(self, input_size, hidden_size, output_size):
 # i: input token, h: hidden state, o: output
 self.i2h = nn.Embedding(input_size, hidden_size)
 self.h2h = nn.Linear(hidden_size, hidden_size)
 self.h2o = nn.Linear(hidden_size, output_size) # output_size: number of labels

 def forward(self, x, hidden_state):
 x = self.i2h(x)
 hidden_state = self.h2h(hidden_state)
 hidden_state = torch.tanh(x + hidden_state)
 out = self.h2o(hidden_state)
 return out, hidden_state

Recall: Language Modelling Task

• Final goal: predict/estimate the probability of a sequence

• Actual task:
• Predict the next word
• MLM

• In a perfect world:
• The RNN hidden states should be able capture all contextual information

9

Probability(Some sentence over here.)

Reality

10

Also, we need more! What of larger semantic units?

• How can we know when larger units are similar in meaning?
• CTV News: Poilievre-led attempt to bring down Trudeau minority over

carbon tax fails.
• CBC News: Liberals survive non-confidence vote on carbon tax with

Bloc, NDP backing.
• The Beaverton: Co-worker that everyone hates surprised he can’t get

colleagues to do what he wants.

11

12

RNN & next word prediction:
Not good compositional representation
• Next word prediction:

• The hidden state i is encoding information of everything from the
beginning (index 0) to the very end (index i).

• We want some bigger semantic units
• Poilievre-led attempt to bring down Trudeau minority over carbon tax fails.

• Some hacks may work, but not really

13

Also, we need more! What of larger semantic units?

• How can we know when larger units are similar in meaning?
• CTV News: Poilievre-led attempt to bring down Trudeau minority over

carbon tax fails.
• CBC News: Liberals survive non-confidence vote on carbon tax with

Bloc, NDP backing.
• The Beaverton: Co-worker that everyone hates surprised he can’t get

colleagues to do what he wants.

People interpret the meaning of larger text units
– entities, descriptive terms, facts, arguments, stories –

by semantic composition of smaller elements.
14

Representing Phrases as Vectors

• Vector for single words are useful as features but limited.
• the country of my birth
• the place where I was born

• Can we extend the ideas of word vector spaces to phrases?
15

Understand Larger Semantic Units

16

• Use the principle of compositionality!
• The meaning (vector) of a sentence is

determined by:
1. the meanings of its words
2. a method that combine them.

17

Tree RNNs
• Basic computational unit:

• Recursive Neural Network

18

Goller & Küchler 1996,
Costa et al. 2003,
Socher et al. ICML, 2011.

Version 1: Simple concatenation Tree RNN

• Only a single weight matrix = composition function!
• No real interaction between the input words!
• Not adequate for human language composition function

19

Version 2: PCFG + Syntactically-United RNN
• Idea: Condition the composition function on the syntactic

categories, “untie the weights.”
• Allows for different composition functions for pairs of syntactic

categories, e.g. Adv + AdjP, VP + NP.
• Combines discrete syntactic categories with continuous semantic

information.

20

SU-RNN: Learns a soft version of head words

21

Head words get bigger weights in the matrices

More versions!

• Version 4: Recursive Neural Tensor Network
• Version 5: Tree-Structured Long Short-Term Memory Networks
• …

22

Natural Language Inference

• Can we tell if one piece of text follows from another?
• Poilievre-led attempt to bring down Trudeau minority over carbon tax fails.
• Liberals survive non-confidence vote on carbon tax with Bloc, NDP backing.

• Natural Language Inference = Recognizing Textual Entailment
[Dagan 2005, MacCartney & Manning, 2009]

23

NLI: The Task

James Byron Dean refused to move without blue jeans

{entails, contradicts, neither}

James Dean didn’t dance without pants

24

NLI: The Task

Simple task to define, but engages the full complexity of compositional
semantics:
• Lexical entailment
• Quantification
• Coreference
• Lexical/scope ambiguity
• Commonsense knowledge
• Propositional atittudes
• Modality
• Factivity and implicativity
• …

25

Natural logic: relations
• Seven possible relations between phrases/sentences:

26

Natural logic: relation joins

27

Can our NNs learn to make these inferences
over pairs of embedding vectors?

A minimal NN for lexical relations
[Bowman 2014]

• Words are learned embedding
vectors.

• One plain TreeRNN or TreeRNTN layer
• Softmax emits relation labels
• Learn everything with SGD.

28

Lexical relations: results

• Both models tuned, then trained to convergence on five randomly
generated datasets

• Reported figures: % correct (macroaveraged F1)
• Both NNs used 15d embeddings, 75d comparison layer

29

Transformers

30

Transformer

• Attention is All You Need
• Key, Query, Value… from Lecture 2
• Each token’s representation:

weighted sum of other token’s
representation.

• Soft “syntactic” structure!

31
BertViz demo

https://github.com/jessevig/bertviz

Soft Syntactic Structure

32

???

More when we reach interpretability:
Spoil alert: Transformers learn some soft syntactic structure,

but nothing like formal, human syntax as we understood.

Sentence Embedding
• MEAN: take the average of all word

embeddings
• MAX: take the maximum value

along every dimension
• CLS: Use the embedding of the

CLS token

33

The capital city of Canada is Ottawa[CLS]

The capital city of Canada is Ottawa[CLS]

BERT

embeddings

tokens

Pooling: MEAN, MAX, CLS*

Sentence-BERT

34

35

SimCSE: Contrastive Learning

36

37

Why is BERT great?

• All NLP task:
• One of these four cases
• Or some clever

adaptation (Assignment
1 Q1/2)

• Very good result!

38

39

Build me an NLP
application.

40

import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer

if __name__ == '__main__':
 dataset = load_dataset("yelp_review_full")
 tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

 def tokenize_function(examples):
 return tokenizer(examples["text"], padding="max_length", truncation=True)

 tokenized_datasets = dataset.map(tokenize_function, batched=True)
 model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)

 def acc(eval_pred):
 logits, labels = eval_pred
 predictions = torch.argmax(logits, dim=-1)
 return (predictions == labels).sum().item() / len(labels)

 training_args = TrainingArguments(output_dir="test_trainer", report_to=None)

 trainer = Trainer(
 model=model,
 args=training_args,
 train_dataset=tokenized_datasets["train"],
 eval_dataset=tokenized_datasets["test"],
 compute_metrics=acc,
)

 trainer.train()

41

NOW, ENJOY YOUR

	Slide 1: Vector Semantics II
	Slide 2: Terminology Hell
	Slide 3: Contextual vs. Global Word Embedding
	Slide 4: The Language Modelling Pipeline
	Slide 5: Tokenization and Tokenizers
	Slide 6: Tokenization and Tokenizers
	Slide 7: Contextual Word Embedding
	Slide 8
	Slide 9: Recall: Language Modelling Task
	Slide 10: Reality
	Slide 11: Also, we need more! What of larger semantic units?
	Slide 12
	Slide 13: RNN & next word prediction: Not good compositional representation
	Slide 14: Also, we need more! What of larger semantic units?
	Slide 15: Representing Phrases as Vectors
	Slide 16: Understand Larger Semantic Units
	Slide 17
	Slide 18: Tree RNNs
	Slide 19: Version 1: Simple concatenation Tree RNN
	Slide 20: Version 2: PCFG + Syntactically-United RNN
	Slide 21: SU-RNN: Learns a soft version of head words
	Slide 22: More versions!
	Slide 23: Natural Language Inference
	Slide 24: NLI: The Task
	Slide 25: NLI: The Task
	Slide 26: Natural logic: relations
	Slide 27: Natural logic: relation joins
	Slide 28: A minimal NN for lexical relations [Bowman 2014]
	Slide 29: Lexical relations: results
	Slide 30: Transformers
	Slide 31: Transformer
	Slide 32: Soft Syntactic Structure
	Slide 33: Sentence Embedding
	Slide 34: Sentence-BERT
	Slide 35
	Slide 36: SimCSE: Contrastive Learning
	Slide 37
	Slide 38: Why is BERT great?
	Slide 39
	Slide 40
	Slide 41

