
Statistics
and

Parsing
CSC485

1

Announcement

• Essay 5 for grad students posted.
• Lillian Lee, “Fast Context-Free Grammar Parsing Requires Fast

Boolean Matrix Multiplication,” JACM, 49(1), 2002, 1–15.
• Due date: noon, Friday 29 November 2024.

2

Statistics and Parsing

• Statistical resolution of PP attachment ambiguities
• Statistical parsing
• Unsupervised parsing

3

Ambiguity
Recall lecture 6:
• Lexical Ambiguity

• The lawyer walked to the bar and addressed the jury.
• The lawyer walked to the bar and ordered a beer.

• Syntactic Ambiguity
• Nadia saw the cop with the binoculars.

• Semantic Ambiguity
• Everyone here speaks two languages.

• Pragmatic Ambiguity
• Nadia: Do you know who’s going to the party?

4

Ambiguity

• When all the readings make sense:
• Develop a way to represent them all.
• Quantifier Scope.

• When only some (typically one) reading makes sense:
• Find a way to identify it.

5

Quantifier Scope Ambiguity

• A3: “Every student takes a course”
• How many readings does this sentence have?

• Every student takes a course. Gerald takes CSC401, Frank takes
CSC485 and Jinman takes CSC311.

• Every student takes a course. The course is CSC485.

• How to represent the two readings?

6

Formal Semantics

Compositionality:
• The meaning of a complex expression is determined by the

meanings of its parts and the way they are combined.
• Example: “The goalie kicked the ball” → combine meanings of

“goalie,” “kick,” and “ball.”
• In TRALE: (… sem:goalie, …).

• We can represent the meaning of sentences in their logic forms.

7

Logical Form
Frank screams

Scream(Frank)

The goalie kicked the ball

∃x. ∃y. (Goalie(x) ∧ Ball(y) ∧ Kicked(x,y))

• Predicates: Represent properties or relations (e.g., Loves(x, y)).
• Arguments: Entities participating in the relations (e.g., John, Mary).
• Quantifiers: Express quantities (e.g., every, exists).
• Connectives: Logical operations (e.g., AND (∧), OR (∨), NOT (¬)).

8

• Every student takes a course. Gerald takes CSC401, Frank takes
CSC485 and Jinman takes CSC311.

∀x.(student(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

• Every student takes a course. The course is CSC485.
∃y.(course(y) ∧ ∀x.(student(x) ⇒ take(x, y)))

9

• Every student takes a course. Gerald takes CSC401, Frank takes
CSC485 and Jinman takes CSC311.

∀x.(student(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

• Every student takes a course. The course is CSC485.
∃y.(course(y) ∧ ∀x.(student(x) ⇒ take(x, y)))

• Every professor takes a course.
∀x.(professor(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

∃y.(course(y) ∧ ∀x.(professor(x) ⇒ take(x, y)))

• Every student eats a cookie.
∃y.(cookie(y) ∧ ∀x.(student(x) ⇒ eat(x, y)))

∀x.(student(x) ⇒ ∃y.(cookie(y) ∧ eat(x, y)))

10

• Every student takes a course. Gerald takes CSC401, Frank takes
CSC485 and Jinman takes CSC311.

∀x.(student(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

• Every student takes a course. The course is CSC485.
∃y.(course(y) ∧ ∀x.(student(x) ⇒ take(x, y)))

• Every professor takes a course.
∀x.(professor(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

∃y.(course(y) ∧ ∀x.(professor(x) ⇒ take(x, y)))

• Every student eats a cookie.
∃y.(cookie(y) ∧ ∀x.(student(x) ⇒ eat(x, y)))

∀x.(student(x) ⇒ ∃y.(cookie(y) ∧ eat(x, y)))

11

Beta Reduction

• Solution: Represent every constituent with a function.

• Do this with logical form?

def f(x):
 return 2 * x

f(3)

Result: 6

(lambda x: x*2)(3)

Result: 6

(lambda x: 'scream(' + x + ')')('Frank')

'scream(Frank)'

12

Beta Reduction

• Solution: Represent every constituent with a function.
• Frank screams: scream(Frank)

• Frank:

• Frank

• Screams:

• λx. scream(x)

• Frank screams:

• (λx. scream(x))(Frank) = scream(Frank)

13

Beta Reduction

• A function’s input can also be a function.

14

(lambda f: f(3))(lambda x: x**2)

Beta Reduction: A3 Example

• Understanding the sentence as we parse it.
• Every student takes a course.

∀x.(hacker(x) ⇒∃y.(language(y) ∧ speak(x, y)))

• Every student
λP.∀x.(student(x) ⇒ P(x))

• takes a course
λz.∃y.(course(y) ∧ take(z, y))

15

Beta Reduction: A3 Example

• Every student
λP.∀x.(student(x) ⇒ P(x))

• takes a course
λz.∃y.(course(y) ∧ take(z, y))

16

Quantifier Storage

• Every student takes a course. Gerald takes CSC401, Frank takes
CSC485 and Jinman takes CSC311.

∀x.(student(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

• Every student takes a course. The course is CSC485.
∃y.(course(y) ∧ ∀x.(student(x) ⇒ take(x, y)))

• How to get the second reading?

17

Quantifier Storage

18

Store the quantifier
scope at

(1) the parsing of NP

Retrive the quantifier
scope at

(2) the parsing of S

Quantifier Storage
• Storage at (1) NP

1. Replace LF of the NP at (1) with a placeholder λF.F(z)
2. Store the actual LF and the free variable z in qstore

• Retrieval at (2) S

19

1. We construct a function λz.LS, where LS is the current LF, and z is the variable paired in the qstore entry.
2. Then, we apply this function to the LF from the qstore entry.
3. Finally, we beta normalise. Using beta normalisation, we obtain the second reading of the sentence.

Quiz 11

• Complete this beta reduction.

20

Ambiguity

• When all the readings make sense:
• Develop a way to represent them all.
• Quantifier Scope.

• When only some (typically one) reading makes sense:
• Find a way to identify it.

21

Statistical PP attachment methods

• A classification problem.
• Input: verb, noun1, preposition, noun2

Output: V-attach or N-attach
• Example:

Examined the raw materials with the optical microscope.

• Does not cover all PP problems.
v n1 p n2

22

Hindle & Rooth 1993: Input

• Corpus: Partially parsed news text.
• “Partially parsed”:

• Automatic.
• Many attachment decisions punted.
• A collection of parse fragments for each sentence.

23

The radical changes in export and customs regulations evidently are aimed at remedying an extreme shortage of consumer
goods in the Soviet Union and assuaging citizens angry over the scarcity of such basic items as soap and windshield wipers.

From Hindle & Rooth 1993 24

Hindle & Rooth 1993: Input

• Data: [v,n,p] triples; v or p may be null; v may be –.
The radical changes in export and customs regulations evidently are aimed at remedying an
extreme shortage of consumer goods in the Soviet Union and assuaging citizens angry over
the scarcity of such basic items as soap and windshield wipers.

v n p

– change in

aim PRO at

remedy shortage of
NULL good in

assuage citizen NULL

NULL scarcity of

P attached to
v or n?

25

Hindle & Rooth 1993: Algorithm

• Idea: Compute lexical associations (LAs)
between p and each of v, n.
— Is the p more associated with the v or with the n?

• Learn a way to compute LA for each [v,n,p] triple.

• Use to map from [v,n,p] to {V-attach, N-attach}.

26

Hindle & Rooth 1993: Algorithm

Method: Bootstrapping.
1. Label unambiguous cases as N- or V-attach:

When v is NULL, n is pronoun, or p is of.
2. Iterate (until nothing changes):

a. Compute LA score for each triple from data labelled so far.
b. Label the attachment of any new triples whose score is over threshold.

3. Deal with “leftovers” (random assignment).
Test cases: Compute the LA score (or fail).

27

Hindle & Rooth 1993: Algorithm

• Lexical association score: log-likelihood ratio of verb- and noun-
attachment.

• Can’t get these probabilities directly — data are too sparse.
• So, estimate them from the data that we can get.

28

Hindle & Rooth 1993: Algorithm

• Lexical association score: log-likelihood ratio of verb- and noun-
attachment.

29

Hindle & Rooth 1993: Example

Moscow sent more than 100,000 soldiers into Afghanistan …

• Choose between:
 V-attach: [VP send [NP … soldier NULL] [PP into…]]

 N-attach: [VP send [NP … soldier [PP into…]]…]

30

Hindle & Rooth 1993: Example

❶P(V-attach into | send, soldier)
 ≈ P(V-attach into | send) ⋅ P(NULL | soldier)

❷P(N-attach into | send, soldier)
 ≈ P(N-attach into | soldier)

c(send, into)
c(send)

.049

c(soldier, NULL)
c(soldier)

.800

c(soldier, NULL)
c(soldier) .800

LA(send, soldier, into)
= log2(.049 × .800/.0007) ≈ 5.81 31

Hindle & Rooth 1993: Results

• Training: 223K triples
Testing: 1K triples
Results: 80% accuracy
(Baselines: 66% by noun attachment; 88% by humans.)

32

Hindle & Rooth 1993: Discussion

• Advantages: Unsupervised?; gives degree of preference.
• Disadvantages: Needs lots of partially parsed data. Other words

don’t get a vote.
• Importance to CL:

• Use of large amounts of unlabelled data, with clever
application of linguistic knowledge, to learn useful statistics.

33

Brill & Resnik 1994: Method

• Corpus-based, non-statistical method.
• Transformation-based learning: Learns sequence of rules to apply

to each input item.
• Form of transformation rules:

• Flip attachment decision (from V to N1 or vice versa) if
{v, n1, p, n2} is w1 [and {v, n1, p, n2} is w2].

• All rules apply, in order in which they are learned.

A quad: Uses head noun of PP too Optional conjunct

34

Brill & Resnik 1994: Method

35

Unlabelled text [attachments not assigned]

Initial state labeller

Labelled text [attachments assigned,
but maybe not correctly]

Learner Truth
[attachments all
correctly labelled]

Transformations
[ordered list of rules to

apply to new data]

Learner uses diffs
between truth and
labelled text to select
new rule, then
applies it.

Brill & Resnik 1994: Example

Some rules learned:
Start by assuming N1 attachment, and then change attachment …
 1. from N1 to V if p is at.
 2. from N1 to V if p is as.
 ⋮
 6. from N1 to V if n2 is year.
 8. from N1 to V if p is in and n1 is amount.
 ⋮
15. from N1 to V if v is have and p is in.
17. from V to N1 if p is of.

36

Brill & Resnik 1994: Results

• Training: 12K annotated quads
Testing: 500 quads
Results: 80% accuracy
(Baseline: 64% by noun attachment)

37

Brill & Resnik 1994: Discussion

• Advantages: Readable rules (but may be hard); can build in bias
in initial annotation; small number of rules.

• Disadvantages: Supervised; no strength of preference. Very
memory-intensive.

• Importance to CL:
• Successful general method for non-statistical learning from

annotated corpus.
• Based on popular (and relatively easily modified) tagger.

38

Since then…

• Modestly better methods exist (e.g., Ratnaparkhi 1998; Belinkov et
al. 2014) that leverage:

• large amounts of noisy, unannotated data (most of the partial
parses were not being used anyway)

• early attempts such as Hindle & Rooth 1993, where they are
known to be very accurate

• vector-based language models (neural methods for English?)
• …but the field mostly lost interest when it emerged that parsing

decisions could be made with the assistance of language models.

39

Since then…

• Modestly better methods exist (e.g., Ratnaparkhi 1998; Belinkov et
al. 2014).

• … but the field mostly lost interest when it emerged that parsing
decisions could be made with the assistance of language models:

• Far more context taken into account
• Much better numbers (but lots of easy decisions folded in that inflate

these – PP attachment now in high 80s)
• PP attachment still very important for FWO languages

(Do & Rehbein 2020).

40

Statistics and Parsing

• Statistical resolution of PP attachment ambiguities
• Statistical parsing
• Unsupervised parsing

41

Statistical Parsing

• General idea:
• Assign probabilities to rules in a context-free grammar.

• Use a likelihood model.
• Combine probabilities of rules in a tree.

• Yields likelihood of a parse.
• The best parse is the most likely one.

42

Statistical Parsing

• PCFG Example

43

Statistical Parsing

• PCFG for disambiguation:
• Example: Book the dinner flight

44

45

Statistical Parsing

• Motivations:
• Uniform process for attachment decisions.
• Use lexical preferences in all decisions.

46

General Approaches
1. Assign a probability to each rule of grammar, including lexical

productions.
• Parse string of input words with probabilistic rules.

 The can will rust.

2. Assign probabilities only to non-lexical productions.
• Probabilistically tag input words with syntactic categories using

a part-of-speech tagger.
• Consider the pre-terminal syntactic categories to be terminals,

parse that string with probabilistic rules.
 Det N Modal Verb.

47

Statistical chart parsing

• Consider tags as terminals
(i.e., use a PoS tagger to pre-process input texts).
 Det N Modal Verb.

• For probability of each grammar rule, use MLE.
• Probabilities derived from hand-parsed corpora (treebanks).
• Count frequency of use c of each rule, for each non-terminal C

and each different RHS.
• What are some problems with this approach?

48

Statistical chart parsing

• Consider tags as terminals
(i.e., use a PoS tagger to pre-process input texts).
 Det N Modal Verb.

• For probability of each grammar rule, use MLE.
• Probabilities derived from hand-parsed corpora (treebanks).
• Count frequency of use c of each rule, for each non-terminal C

and each different RHS.
• What are some problems with this approach?

• Sparsity
• Tied to the grammar of the original treebank.

49

Statistical chart parsing

• MLE probability of rules:
• For each rule:

• Takes no account of the context of use of a rule:
independence assumption.

• Source-normalized: assumes a top-down generative process.
• NLTK’s pchart demo doesn’t POS-tag first (words are generated

top-down), and it shows P(t) rather than P(t|s)’.

50

51

52

53

54

Statistical chart parsing
• In this view of chart parsing, probability of chart entries is

relatively simple to calculate. For completed constituents,
maximize over C1, …, Cn:

• e0 is the entry for current constituent, of category C0;
• e1 … en are chart entries for C1 … Cn in the RHS of the rule.
• NB: Unlike for PoS tagging above, the Ci are not necessarily lexical

categories.
55

Statistical chart parsing
• Consider a complete parse tree, t, with root label S.

• Recasting ❺, t has the probability:
 𝑃 𝑡 = 𝑃 𝑆 ∗ Π𝑛𝑃 𝑟𝑢𝑙𝑒 𝑛 𝑐𝑎𝑡 𝑛

where n ranges over all nodes in the tree t;
 rule(n) is the rule used for n;
 cat(n) is the category of n.

• P(S) = 1!
• “Bottoms out” at lexical categories.
• Note that we’re parsing bottom-up, but the generative model

“thinks” top-down regardless.
56

❻

Statistical chart parsing

• But just like non-statistical chart parsers, this one only answers
“yes” or “no” (with a probability) in polynomial time:

• It’s not supposed to matter how we got each constituent. Just
the non-terminal label and the span are all that should matter.

• There might be exponentially many trees in this formulation.
• And we’re not calculating the probability that the input is a

sentence – this is only the probability of one interpretation (tree).

61

Announcement

• Extra zoom office hours:
• Saturday 2-4: Jinyue.
• Sunday 10-12: Frank.

• We will post zoom link soon on Piazza.

62

Evaluation
• Evaluation method:

• Train on part of a parsed corpus.
(I.e., gather rules and statistics.)

• Test on a different part of the corpus.
• Development test: early stopping, meta-parameters
• Evaluation test: evaluate (and then done)

• In one sense, the best evaluation of a method like this would be
data likelihood, but since we’re scoring trees instead of strings, it’s
difficult to defend any sort of intuition about the numbers
assigned to them.

63

Evaluation

• Evaluation: PARSEVAL measures compare parser output to known
correct parse:

• Labelled precision, labelled recall.

• F-measure = harmonic mean of precision and recall
 = 2PR / (P + R)

64

Fraction of correct constituents in output.

Fraction of constituents in output that are correct.

Evaluation

• Evaluation: PARSEVAL measures compare parser output to
known correct parse:

• Penalize for cross-brackets per sentence:
Constituents in output that overlap two (or more) correct ones;
e.g., [[A B] C] for [A [B C]].

[[Nadia] [[smelled] [the eggplant]]]
[[[Nadia] [smelled]] [the eggplant]]

The labels on the subtrees aren’t necessary for this one.

65

Evaluation

• PARSEVAL is a classifier accuracy score – much more
extensional. All that matters is the right answer at the end.

• But that still means that we can look at parts of the right answer.
• Can get ~75% labelled precision, recall, and F with above

methods.

66

BERT-based parser

67Berkeley Neural Parser. Kitaev and Klein. 2018. Constituency Parsing with a Self-Attentive Encoder.

https://github.com/nikitakit/self-attentive-parser

Unsupervised Parsing

• Parsing without training on parse trees.
How could such a thing be learned?

• Well, unsupervised doesn’t always mean no supervision…
• Parts of speech
• Binary-branch restrictions

• … and we often lower the bar in terms of what we expect the
system to learn:

• Unlabelled (binary) trees
• Hierarchical structure without explicit, recursive rules.

68

Before we start

69

RNN Transformers

Before we start

70

RNN
Transformers

Long Short Term Memory
LSTM!

LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:
• RNN works fine if the input sentence is short
• Learn the sentence piece by piece

• Reset the hidden state periodically
• … When to reset the hidden state?
• The ML approach:

• Let another NN model to predict it.
• (actually, we use a module of the current model to predict it)

71

current input
embedding

previous
hidden state

bias

LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:

72

current input
embedding

previous
hidden state

bias

Nothing fancy, just renaming “hidden” to “output”

LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:

73

current input
embedding

previous
hidden state

bias

The “real” hidden state is just the output state…
With a few things forget.

“\cdot” is element-wise multiplication

 ranges from 0-1

LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:

74

current input
embedding

previous
hidden state

bias

Cell state: the component tell
the model what to forget.

Forget gate: what information to
wipe from the previous cell state.

Input gate: what information to
keep from the current cell state.

LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:

75

current input
embedding

previous
hidden state

bias
Control the model

when to (soft) reset
the hidden state.

PRPN: parse-read-predict

• PRPN trains a sequence of components that build a parse tree on
the way to predicting the next word in a string of words – a fancy
language model.

• But that means that supervising the whole system in sequence
means that we must only provide words in sequence…

• for a parser, that counts as unsupervised!
• When we are done, we can break off the later components and

use the parser by itself.

76

Some terminology
• “Corner-dominant”

• The highest ancestor for which a node is the left corner, e.g.:

77node

node’s parent

corner-dominant

corner-dominant’s parent

Some terminology
• “Corner-dominant”

• The highest ancestor for which a node is the left corner, e.g.:

78node

node’s parent

corner-dominant

corner-dominant’s parent

Some terminology
• “Left extent”

• lt = the left corner of a pre-terminal node’s corner-dominant’s
parent, for t > 0, e.g.:

79

corner-dominant

corner-dominant’s parent

x2: pre-terminal node

corner-dominant

l2: left extent

Some terminology
• “Left extent”

• lt = the left corner of a pre-terminal node’s corner-dominant’s
parent, for t > 0, e.g.:

80

corner-dominant

corner-dominant’s parent

x2: pre-terminal node

corner-dominant

l4: left extent

Some terminology
• “Dependency-range gate”

• 𝑔𝑖
𝑡 =ቊ

1, 𝑙𝑡 ≤ 𝑖 < 𝑡
0, 0 ≤ 𝑖 < 𝑙𝑡

 ,labels left extent of xt, e.g.:

81

corner-dominant’s parent
x2’s corner-dominant

x2

g2: 1 1 -- -- -- -- -- --

l2

Some terminology
• “Dependency-range gate”

• 𝑔𝑖
𝑡 =ቊ

1, 𝑙𝑡 ≤ 𝑖 < 𝑡
0, 0 ≤ 𝑖 < 𝑙𝑡

 ,labels left extent of xt, e.g.:

82

corner-dominant’s parent
x2’s corner-dominant

x4

g4: 0 0 1 1 -- -- -- --

l4

Some terminology
• “Height”

• h(w) = 1,
• h(n) = max

𝑚∈𝑇𝑛\𝑛
ℎ 𝑚 + 1.

• Note: height is not depth, nor is it h(root)-depth.
Count from the bottom.

83

1 1 1 1 1 1 1 1

22 2 2 2 2 22

3 3 3

4 4

5

6

Some terminology
• “Roark-Hollingshead (RH) distance”

• d(i) = di = ℎ 𝑤𝑖−1,𝑤𝑖 −2

ℎ 𝑟 −1
.

where h(w-1,w0) = h(wL-1,wL) = h(r)+1,
 h(u,v) = h(u ⊔ v) everywhere else (trees are CNF).

84

0 1 2 3 4 5 6 7=L-1

4

5

6

d(0) = 6+1−2

6−1
= 1

d(2) = 5−2

6−1
=

3

5

d(4) = 4−2

6−1
=

2

5

“-1”

Quiz
• What’s d(5)?

85

0 1 2 3 4 5 6 7=L-1“-1”

Roark-Hollingshead Conjecture

86

Q: How much of
this does this preserve?

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo <end>

A: All of it (except labels)!
Very cool, because this is a

“local” linear statistic for
tree structures.

Some more terminology
• “Dependency range”

• α𝑖
𝑡 = 𝑠𝑖𝑔𝑛 𝑑𝑡−𝑑𝑖+1 +1

2
, where 𝑖 < 𝑡.

87α6: 1 0 1
1

2
 0

1

2
 -- --

PRPN’s big idea

88

α6: 1 0 1
1

2
 0

1

2
 -- --

g6: 0 0 0 0 0 1 -- --

𝑔𝑖
𝑡 = 𝑃 𝑙𝑡 ≤ 𝑖 ≈ ෑ

𝑗=𝑖+1

𝑡−1

α𝑗
𝑡 .

Why? See Shen et al. (2018)

0 1 2 3 4 5 6

PRPN’s big idea

89

𝑔𝑖
𝑡 = 𝑃 𝑙𝑡 ≤ 𝑖 ≈ ෑ

𝑗=𝑖+1

𝑡−1

α𝑗
𝑡 .

Why? See Shen et al. (2018)

0 1 2 3 4 5 6

α5: 1 1 1 1
1

2
 -- -- --

g5: 1 1 1 1 1 -- -- --

PRPN: Parse
• Soften up “Dependency range:”

• α𝑖
𝑡 = 𝑠𝑖𝑔𝑛 𝑑𝑡−𝑑𝑖+1 +1

2
, where 𝑖 < 𝑡, becomes:

• 𝛼𝑖
𝑡 =

ℎ𝑎𝑟𝑑𝑡𝑎𝑛ℎ((𝑑𝑡−𝑑𝑖+1)∙𝜏)

2
, where τ is temperature,

• and ℎ𝑎𝑟𝑑𝑡𝑎𝑛ℎ 𝑥 = max −1, min 1, 𝑥 .

• Then learn RH distance with a 2-layer convolution:

• 𝑞𝑡 = 𝑅𝑒𝐿𝑈 𝑊𝑞

𝑒𝑡−𝐿

𝑒𝑡−𝐿+1
⋯
𝑒𝑡

+ 𝑏𝑞 ,

• 𝑑𝑡 = 𝑅𝑒𝐿𝑈 𝑊𝑑𝑞𝑡 + 𝑏𝑑 .

• But we’re not going to supervise this with dt from actual trees…

90

Word vectors for wi-L, wi-L+1, … wi

PRPN: Read

• Instead, we couple the input to memory states mi and use RH
distance to interpolate mixtures of previous time steps into
“summary vectors” that predict subsequent memory states:

• 𝑘𝑡 = 𝑊𝑚𝑚𝑡−1 + 𝑊𝑒𝑒𝑡,

• ҧ𝑠𝑖
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑚𝑖𝑘𝑡
𝑇

dim(𝑘)
,

• 𝑠𝑖
𝑡 =

𝑔𝑖
𝑡

σ𝑗 𝑔𝑗
𝑡 ҧ𝑠𝑖

𝑡 ,

•
ഥ𝑚𝑡

ҧ𝑐𝑡
= σ

𝑖=1

𝑡−1

𝑠𝑖
𝑡 ∙

𝑚𝑖

𝑐𝑖
,

91

Summary

vector

Big idea: depends
on di’s now

ҧ𝑐𝑡

ഥ𝑚𝑡

𝑒𝑡

𝑐𝑡

𝑚𝑡

LSTM

Recurrent update

PRPN: Predict
• Task: predict the probability distribution of next word 𝑥𝑡+1.
• Now, we know m0,…,mt and e0,…,et, we need to predict et+1

• 𝑘𝑡 = 𝑊𝑚𝑚𝑡−1 + 𝑊𝑒𝑒𝑡,

• ҧ𝑠𝑖
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑚𝑖𝑘𝑡
𝑇

dim(𝑘)
,

• 𝑟𝑖
𝑡 =

𝑔𝑖
𝑡+1

σ𝑗 𝑔𝑗
𝑡+1 ҧ𝑠𝑖

𝑡 ,

• ҧ𝑙𝑡 = σ
𝑖=𝑙𝑡+1

𝑡−1

𝑟𝑖
𝑡 ∙ 𝑚𝑖

• Estimate 𝑑𝑡+1 ≈ 𝑅𝑒𝐿𝑈 ෩𝑊𝑑𝑚𝑡 + ෨𝑏𝑑 ,

• then estimate ǁ𝑒𝑡+1 = tanh(𝑊𝑓

ҧ𝑙𝑡

𝑚𝑡
+ 𝑏𝑓)

92

Depends on dt+1

PRPN Summary
Idea:
• Each word depends on its

parent and its left siblings.
• Use 𝑔𝑖

𝑡
 to control the LM

process
• Can’t directly model 𝑔𝑖

𝑡
because lt is an unobserved
latent variable.

• Use α𝑗
𝑡 to approximate

𝑔𝑖
𝑡 based on RH distance dt.

• Use dt to reconstruct the trees.
• How good is PRPN?

93

DOP: Data-Oriented Parsing

• DOP1 – Supervised DOP:
• Given an annotated corpus, use all subtrees, regardless of size,

to parse new sentences.

94
° means substitute

DOP: Data-Oriented Parsing

• Multiple ways to substitute.
• The probability of a subtree t:

• The number of occurrences of t in
the corpus,

• Divided by the total number of
occurrences of all subtrees t' with
the same root label as t.

• P(t1° … ° tn) = ς𝑖 𝑃(𝑡𝑖)

95

DOP: Data-Oriented Parsing

• ML-DOP – maximum likelihood DOP:
• Use an EM algorithm to estimate P(t) in DOP.

• U-DOP – Unsupervised DOP:
• Simply use all possible subtrees as the “corpus.”

• UML-DOP
• Use randomly sampled possible subtrees as training data.
• Do ML-DOP.

96

Performance on WSJ10

97

Performance on PTB30+

98

	Slide 1: Statistics and Parsing
	Slide 2: Announcement
	Slide 3: Statistics and Parsing
	Slide 4: Ambiguity
	Slide 5: Ambiguity
	Slide 6: Quantifier Scope Ambiguity
	Slide 7: Formal Semantics
	Slide 8: Logical Form
	Slide 9
	Slide 10
	Slide 11
	Slide 12: Beta Reduction
	Slide 13: Beta Reduction
	Slide 14: Beta Reduction
	Slide 15: Beta Reduction: A3 Example
	Slide 16: Beta Reduction: A3 Example
	Slide 17: Quantifier Storage
	Slide 18: Quantifier Storage
	Slide 19: Quantifier Storage
	Slide 20: Quiz 11
	Slide 21: Ambiguity
	Slide 22: Statistical PP attachment methods
	Slide 23: Hindle & Rooth 1993: Input
	Slide 24
	Slide 25: Hindle & Rooth 1993: Input
	Slide 26: Hindle & Rooth 1993: Algorithm
	Slide 27: Hindle & Rooth 1993: Algorithm
	Slide 28: Hindle & Rooth 1993: Algorithm
	Slide 29: Hindle & Rooth 1993: Algorithm
	Slide 30: Hindle & Rooth 1993: Example
	Slide 31: Hindle & Rooth 1993: Example
	Slide 32: Hindle & Rooth 1993: Results
	Slide 33: Hindle & Rooth 1993: Discussion
	Slide 34: Brill & Resnik 1994: Method
	Slide 35: Brill & Resnik 1994: Method
	Slide 36: Brill & Resnik 1994: Example
	Slide 37: Brill & Resnik 1994: Results
	Slide 38: Brill & Resnik 1994: Discussion
	Slide 39: Since then…
	Slide 40: Since then…
	Slide 41: Statistics and Parsing
	Slide 42: Statistical Parsing
	Slide 43: Statistical Parsing
	Slide 44: Statistical Parsing
	Slide 45
	Slide 46: Statistical Parsing
	Slide 47: General Approaches
	Slide 48: Statistical chart parsing
	Slide 49: Statistical chart parsing
	Slide 50: Statistical chart parsing
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Statistical chart parsing
	Slide 56: Statistical chart parsing
	Slide 61: Statistical chart parsing
	Slide 62: Announcement
	Slide 63: Evaluation
	Slide 64: Evaluation
	Slide 65: Evaluation
	Slide 66: Evaluation
	Slide 67: BERT-based parser
	Slide 68: Unsupervised Parsing
	Slide 69: Before we start
	Slide 70: Before we start
	Slide 71: LSTM: Crash Course
	Slide 72: LSTM: Crash Course
	Slide 73: LSTM: Crash Course
	Slide 74: LSTM: Crash Course
	Slide 75: LSTM: Crash Course
	Slide 76: PRPN: parse-read-predict
	Slide 77: Some terminology
	Slide 78: Some terminology
	Slide 79: Some terminology
	Slide 80: Some terminology
	Slide 81: Some terminology
	Slide 82: Some terminology
	Slide 83: Some terminology
	Slide 84: Some terminology
	Slide 85: Quiz
	Slide 86: Roark-Hollingshead Conjecture
	Slide 87: Some more terminology
	Slide 88: PRPN’s big idea
	Slide 89: PRPN’s big idea
	Slide 90: PRPN: Parse
	Slide 91: PRPN: Read
	Slide 92: PRPN: Predict
	Slide 93: PRPN Summary
	Slide 94: DOP: Data-Oriented Parsing
	Slide 95: DOP: Data-Oriented Parsing
	Slide 96: DOP: Data-Oriented Parsing
	Slide 97: Performance on WSJ10
	Slide 98: Performance on PTB30+

