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Announcement

• Essay 5 for grad students posted.
• Lillian Lee, “Fast Context-Free Grammar Parsing Requires Fast 

Boolean Matrix Multiplication,” JACM, 49(1), 2002, 1–15.
• Due date: noon, Friday 29 November 2024.
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Statistics and Parsing

• Statistical resolution of PP attachment ambiguities
• Statistical parsing
• Unsupervised parsing
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Ambiguity
Recall lecture 6:
• Lexical Ambiguity

• The lawyer walked to the bar and addressed the jury.
• The lawyer walked to the bar and ordered a beer.

• Syntactic Ambiguity
• Nadia saw the cop with the binoculars.

• Semantic Ambiguity
• Everyone here speaks two languages.

• Pragmatic Ambiguity
• Nadia: Do you know who’s going to the party?
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Ambiguity

• When all the readings make sense:
• Develop a way to represent them all.
• Quantifier Scope.

• When only some (typically one) reading makes sense:
• Find a way to identify it.
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Quantifier Scope Ambiguity

• A3: “Every student takes a course”
• How many readings does this sentence have?

• Every student takes a course. Gerald takes CSC401, Frank takes 
CSC485 and Jinman takes CSC311.

• Every student takes a course. The course is CSC485.

• How to represent the two readings?
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Formal Semantics

Compositionality:
• The meaning of a complex expression is determined by the 

meanings of its parts and the way they are combined.
• Example: “The goalie kicked the ball” → combine meanings of 

“goalie,” “kick,” and “ball.”
• In TRALE:  (… sem:goalie, …).

• We can represent the meaning of sentences in their logic forms.
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Logical Form
Frank screams

Scream(Frank)

The goalie kicked the ball

∃x. ∃y. ( Goalie(x) ∧ Ball(y) ∧ Kicked(x,y) )

• Predicates: Represent properties or relations (e.g., Loves(x, y)).
• Arguments: Entities participating in the relations (e.g., John, Mary).
• Quantifiers: Express quantities (e.g., every, exists).
• Connectives: Logical operations (e.g., AND (∧), OR (∨), NOT (¬)).
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• Every student takes a course. Gerald takes CSC401, Frank takes 
CSC485 and Jinman takes CSC311.

∀x.(student(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

• Every student takes a course. The course is CSC485.
∃y.(course(y) ∧ ∀x.(student(x) ⇒ take(x, y)))
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• Every student takes a course. Gerald takes CSC401, Frank takes 
CSC485 and Jinman takes CSC311.

∀x.(student(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

• Every student takes a course. The course is CSC485.
∃y.(course(y) ∧ ∀x.(student(x) ⇒ take(x, y)))

• Every professor takes a course.
∀x.(professor(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

∃y.(course(y) ∧ ∀x.(professor(x) ⇒ take(x, y)))

• Every student eats a cookie.
∃y.(cookie(y) ∧ ∀x.(student(x) ⇒ eat(x, y)))

∀x.(student(x) ⇒ ∃y.(cookie(y) ∧ eat(x, y)))
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• Every student takes a course. Gerald takes CSC401, Frank takes 
CSC485 and Jinman takes CSC311.

∀x.(student(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

• Every student takes a course. The course is CSC485.
∃y.(course(y) ∧ ∀x.(student(x) ⇒ take(x, y)))

• Every professor takes a course.
∀x.(professor(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

∃y.(course(y) ∧ ∀x.(professor(x) ⇒ take(x, y)))

• Every student eats a cookie.
∃y.(cookie(y) ∧ ∀x.(student(x) ⇒ eat(x, y)))

∀x.(student(x) ⇒ ∃y.(cookie(y) ∧ eat(x, y)))
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Beta Reduction

• Solution: Represent every constituent with a function.

• Do this with logical form?

def f(x):
  return 2 * x

f(3)

Result: 6

(lambda x: x*2)(3)

Result: 6

(lambda x: 'scream(' + x + ')')('Frank')

'scream(Frank)'
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Beta Reduction

• Solution: Represent every constituent with a function.
• Frank screams: scream(Frank)

• Frank:

• Frank

• Screams:

• λx. scream(x)

• Frank screams:

• (λx. scream(x))(Frank) = scream(Frank)
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Beta Reduction

• A function’s input can also be a function.
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(lambda f: f(3))(lambda x: x**2)



Beta Reduction:  A3 Example

• Understanding the sentence as we parse it.
• Every student takes a course.

∀x.(hacker(x) ⇒∃y.(language(y) ∧ speak(x, y)))

• Every student
λP.∀x.(student(x) ⇒ P(x))

• takes a course
λz.∃y.(course(y) ∧ take(z, y))
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Beta Reduction:  A3 Example

• Every student
λP.∀x.(student(x) ⇒ P(x))

• takes a course
λz.∃y.(course(y) ∧ take(z, y))
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Quantifier Storage

• Every student takes a course. Gerald takes CSC401, Frank takes 
CSC485 and Jinman takes CSC311.

∀x.(student(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

• Every student takes a course. The course is CSC485.
∃y.(course(y) ∧ ∀x.(student(x) ⇒ take(x, y)))

• How to get the second reading?
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Quantifier Storage

18

Store the quantifier 
scope at

(1) the parsing of NP

Retrive the quantifier 
scope at

(2) the parsing of S



Quantifier Storage
• Storage at (1) NP

1. Replace LF of the NP at (1) with a placeholder λF.F(z)
2. Store the actual LF and the free variable z in qstore

• Retrieval at (2) S

19

1. We construct a function λz.LS, where LS is the current LF, and z is the variable paired in the qstore entry.
2. Then, we apply this function to the LF from the qstore entry.
3. Finally, we beta normalise. Using beta normalisation, we obtain the second reading of the sentence.



Quiz 11

• Complete this beta reduction.
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Ambiguity

• When all the readings make sense:
• Develop a way to represent them all.
• Quantifier Scope.

• When only some (typically one) reading makes sense:
• Find a way to identify it.
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Statistical PP attachment methods

• A classification problem.
• Input:  verb, noun1, preposition, noun2

Output: V-attach or N-attach
• Example: 

Examined the raw materials with the optical microscope. 

• Does not cover all PP problems.
v n1 p n2
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Hindle & Rooth 1993: Input

• Corpus:  Partially parsed news text.
• “Partially parsed”:

• Automatic.
• Many attachment decisions punted.
• A collection of parse fragments for each sentence.
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The radical changes in export and customs regulations evidently are aimed at remedying an extreme shortage of consumer 
goods in the Soviet Union and assuaging citizens angry over the scarcity of such basic items as soap and windshield wipers.

From Hindle & Rooth 1993 24



Hindle & Rooth 1993: Input 

• Data:  [v,n,p] triples; v or p may be null; v may be –.
The radical changes in export and customs regulations evidently are aimed at remedying an 
extreme shortage of consumer goods in the Soviet Union and assuaging citizens angry over 
the scarcity of such basic items as soap and windshield wipers.

v n p

– change in

aim PRO at

remedy shortage of
NULL good in

assuage citizen NULL

NULL scarcity of

P attached to
v or n?

25



Hindle & Rooth 1993: Algorithm

• Idea:  Compute lexical associations (LAs)
between p and each of v, n.
— Is the p more associated with the v or with the n?

• Learn a way to compute LA for each [v,n,p] triple.

• Use to map from [v,n,p] to {V-attach, N-attach}.
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Hindle & Rooth 1993: Algorithm

Method:  Bootstrapping.
1. Label unambiguous cases as N- or V-attach:

When v is NULL, n is pronoun, or p is of.
2. Iterate (until nothing changes):

a. Compute LA score for each triple from data labelled so far.
b. Label the attachment of any new triples whose score is over threshold.

3. Deal with “leftovers” (random assignment).
Test cases: Compute the LA score (or fail).
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Hindle & Rooth 1993: Algorithm

• Lexical association score:  log-likelihood ratio of verb- and noun-
attachment.

 

• Can’t get these probabilities directly — data are too sparse.
• So, estimate them from the data that we can get.
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Hindle & Rooth 1993: Algorithm

• Lexical association score:  log-likelihood ratio of verb- and noun-
attachment.
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Hindle & Rooth 1993: Example

Moscow sent more than 100,000 soldiers into Afghanistan …

• Choose between:
 V-attach:  [VP send [NP … soldier NULL] [PP into…]]

 N-attach:  [VP send [NP … soldier [PP into…]]…]
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Hindle & Rooth 1993: Example

❶P(V-attach into | send, soldier) 
 ≈ P(V-attach into | send) ⋅ P(NULL | soldier)

❷P(N-attach into | send, soldier) 
 ≈ P(N-attach into | soldier)

c(send, into)
c(send)

.049

c(soldier, NULL)
c(soldier)

.800

c(soldier, NULL)
c(soldier) .800

LA(send, soldier, into) 
= log2(.049 × .800/.0007) ≈ 5.81 31



Hindle & Rooth 1993: Results

• Training: 223K triples
Testing: 1K triples
Results: 80% accuracy
(Baselines: 66% by noun attachment; 88% by humans.)
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Hindle & Rooth 1993:  Discussion

• Advantages:  Unsupervised?; gives degree of preference.
• Disadvantages:  Needs lots of partially parsed data.  Other words 

don’t get a vote.
• Importance to CL:

• Use of large amounts of unlabelled data, with clever 
application of linguistic knowledge, to learn useful statistics.
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Brill & Resnik 1994:  Method

• Corpus-based, non-statistical method.
• Transformation-based learning:  Learns sequence of rules to apply 

to each input item.
• Form of transformation rules:

• Flip attachment decision (from V to N1 or vice versa) if
{v, n1, p, n2} is w1 [and {v, n1, p, n2} is w2].

• All rules apply, in order in which they are learned.

A quad: Uses head noun of PP too Optional conjunct
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Brill & Resnik 1994: Method

35

Unlabelled text [attachments not assigned]

Initial state labeller

Labelled text [attachments assigned,
but maybe not correctly]

Learner Truth
[attachments all
correctly labelled]

Transformations
[ordered list of rules to 

apply to new data]

Learner uses diffs
between truth and 
labelled text to select 
new rule, then 
applies it.



Brill & Resnik 1994: Example

Some rules learned:
Start by assuming N1 attachment, and then change attachment …
  1. from N1 to V if p is at.
  2. from N1 to V if p is as.
 ⋮
  6. from N1 to V if n2 is year.
  8. from N1 to V if p is in and n1 is amount.
 ⋮
15. from N1 to V if v is have and p is in.
17. from V to N1 if p is of.
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Brill & Resnik 1994: Results

• Training: 12K annotated quads
Testing: 500 quads
Results: 80% accuracy
(Baseline: 64% by noun attachment)
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Brill & Resnik 1994: Discussion

• Advantages:  Readable rules (but may be hard); can build in bias 
in initial annotation; small number of rules.

• Disadvantages:  Supervised; no strength of preference. Very 
memory-intensive.

• Importance to CL:
• Successful general method for non-statistical learning from 

annotated corpus.
• Based on popular (and relatively easily modified) tagger.
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Since then…

• Modestly better methods exist (e.g., Ratnaparkhi 1998; Belinkov et 
al. 2014) that leverage:

• large amounts of noisy, unannotated data (most of the partial 
parses were not being used anyway)

• early attempts such as Hindle & Rooth 1993, where they are 
known to be very accurate

• vector-based language models (neural methods for English?)
• …but the field mostly lost interest when it emerged that parsing 

decisions could be made with the assistance of language models.
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Since then…

• Modestly better methods exist (e.g., Ratnaparkhi 1998; Belinkov et 
al. 2014).

• … but the field mostly lost interest when it emerged that parsing 
decisions could be made with the assistance of language models:

• Far more context taken into account
• Much better numbers (but lots of easy decisions folded in that inflate 

these – PP attachment now in high 80s)
• PP attachment still very important for FWO languages

(Do & Rehbein 2020).
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Statistics and Parsing

• Statistical resolution of PP attachment ambiguities
• Statistical parsing
• Unsupervised parsing

41



Statistical Parsing

• General idea:
• Assign probabilities to rules in a context-free grammar.

• Use a likelihood model.
• Combine probabilities of rules in a tree.

• Yields likelihood of a parse.
• The best parse is the most likely one.

42



Statistical Parsing

• PCFG Example

43



Statistical Parsing

• PCFG for disambiguation:
• Example: Book the dinner flight

44
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Statistical Parsing

• Motivations:
• Uniform process for attachment decisions.
• Use lexical preferences in all decisions.
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General Approaches
1. Assign a probability to each rule of grammar, including lexical 

productions.  
• Parse string of input words with probabilistic rules.

   The can will rust.

2. Assign probabilities only to non-lexical productions.  
• Probabilistically tag input words with syntactic categories using 

a part-of-speech tagger.  
• Consider the pre-terminal syntactic categories to be terminals, 

parse that string with probabilistic rules.
   Det N Modal Verb.
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Statistical chart parsing

• Consider tags as terminals
(i.e., use a PoS tagger to pre-process input texts).
       Det N Modal Verb.

• For probability of each grammar rule, use MLE.
• Probabilities derived from hand-parsed corpora (treebanks).
• Count frequency of use c of each rule, for each non-terminal C 

and each different RHS. 
• What are some problems with this approach?
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Statistical chart parsing

• Consider tags as terminals
(i.e., use a PoS tagger to pre-process input texts).
       Det N Modal Verb.

• For probability of each grammar rule, use MLE.
• Probabilities derived from hand-parsed corpora (treebanks).
• Count frequency of use c of each rule, for each non-terminal C 

and each different RHS. 
• What are some problems with this approach?

• Sparsity
• Tied to the grammar of the original treebank.
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Statistical chart parsing

• MLE probability of rules:
• For each rule: 

• Takes no account of the context of use of a rule:
independence assumption.

• Source-normalized: assumes a top-down generative process.
• NLTK’s pchart demo doesn’t POS-tag first (words are generated 

top-down), and it shows P(t) rather than P(t|s)’.
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Statistical chart parsing
• In this view of chart parsing, probability of chart entries is 

relatively simple to calculate.  For completed constituents, 
maximize over C1, …, Cn:

• e0 is the entry for current constituent, of category C0; 
• e1 … en are chart entries for C1 … Cn in the RHS of the rule.
• NB: Unlike for PoS tagging above, the Ci are not necessarily lexical 

categories.
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Statistical chart parsing
• Consider a complete parse tree, t, with root label S.

• Recasting ❺, t has the probability:
   𝑃 𝑡 = 𝑃 𝑆 ∗ Π𝑛𝑃 𝑟𝑢𝑙𝑒 𝑛 𝑐𝑎𝑡 𝑛

where n ranges over all nodes in the tree t;
    rule(n) is the rule used for n;
    cat(n) is the category of n.

• P(S) = 1!
• “Bottoms out” at lexical categories.
• Note that we’re parsing bottom-up, but the generative model 

“thinks” top-down regardless.
56
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Statistical chart parsing

• But just like non-statistical chart parsers, this one only answers 
“yes” or “no” (with a probability) in polynomial time:

• It’s not supposed to matter how we got each constituent. Just 
the non-terminal label and the span are all that should matter.

• There might be exponentially many trees in this formulation.
• And we’re not calculating the probability that the input is a 

sentence – this is only the probability of one interpretation (tree).
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Announcement

• Extra zoom office hours:
• Saturday 2-4: Jinyue.
• Sunday 10-12: Frank.

• We will post zoom link soon on Piazza.
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Evaluation
• Evaluation method:

• Train on part of a parsed corpus.
(I.e., gather rules and statistics.)

• Test on a different part of the corpus.
• Development test: early stopping, meta-parameters
• Evaluation test: evaluate (and then done)

• In one sense, the best evaluation of a method like this would be 
data likelihood, but since we’re scoring trees instead of strings, it’s 
difficult to defend any sort of intuition about the numbers 
assigned to them.
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Evaluation

• Evaluation:  PARSEVAL measures compare parser output to known 
correct parse:

• Labelled precision, labelled recall.

• F-measure = harmonic mean of precision and recall
   = 2PR / (P + R)

64

Fraction of correct constituents in output.

Fraction of constituents in output that are correct.



Evaluation

• Evaluation:  PARSEVAL measures compare parser output to 
known correct parse:

• Penalize for cross-brackets per sentence:
Constituents in output that overlap two (or more) correct ones;
e.g., [[A B] C] for [A [B C]].

[[Nadia] [[smelled] [the eggplant]]]  
[[[Nadia] [smelled]] [the eggplant]]

The labels on the subtrees aren’t necessary for this one.
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Evaluation

• PARSEVAL is a classifier accuracy score – much more 
extensional.  All that matters is the right answer at the end.

• But that still means that we can look at parts of the right answer.
• Can get ~75% labelled precision, recall, and F with above 

methods.
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BERT-based parser

67Berkeley Neural Parser. Kitaev and Klein. 2018. Constituency Parsing with a Self-Attentive Encoder.

https://github.com/nikitakit/self-attentive-parser



Unsupervised Parsing

• Parsing without training on parse trees.
How could such a thing be learned?

• Well, unsupervised doesn’t always mean no supervision…
• Parts of speech
• Binary-branch restrictions 

• … and we often lower the bar in terms of what we expect the 
system to learn:

• Unlabelled (binary) trees
• Hierarchical structure without explicit, recursive rules.
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Before we start

69

RNN Transformers



Before we start

70

RNN
Transformers

Long Short Term Memory
LSTM!



LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:
• RNN works fine if the input sentence is short
• Learn the sentence piece by piece

• Reset the hidden state periodically
• … When to reset the hidden state?
• The ML approach:

• Let another NN model to predict it.
• (actually, we use a module of the current model to predict it)

71

current input
embedding

previous
hidden state

bias



LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:

72

current input
embedding

previous
hidden state

bias

Nothing fancy, just renaming “hidden” to “output”



LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:

73

current input
embedding

previous
hidden state

bias

The “real” hidden state is just the output state…
With a few things forget.

“\cdot” is element-wise multiplication

                   ranges from 0-1



LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:

74

current input
embedding

previous
hidden state

bias

Cell state: the component tell 
the model what to forget.

Forget gate: what information to 
wipe from the previous cell state.

Input gate: what information to 
keep from the current cell state.



LSTM: Crash Course
• We talked about RNN’s problem: vanishing gradient.
• RNN:

• LSTM:

75

current input
embedding

previous
hidden state

bias
Control the model 

when to (soft) reset 
the hidden state.



PRPN: parse-read-predict

• PRPN trains a sequence of components that build a parse tree on 
the way to predicting the next word in a string of words – a fancy 
language model.

• But that means that supervising the whole system in sequence 
means that we must only provide words in sequence…

• for a parser, that counts as unsupervised! 
• When we are done, we can break off the later components and 

use the parser by itself.
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Some terminology
• “Corner-dominant”

• The highest ancestor for which a node is the left corner, e.g.:

77node

node’s parent

corner-dominant

corner-dominant’s parent



Some terminology
• “Corner-dominant”

• The highest ancestor for which a node is the left corner, e.g.:

78node

node’s parent

corner-dominant

corner-dominant’s parent



Some terminology
• “Left extent”

• lt = the left corner of a pre-terminal node’s corner-dominant’s 
parent, for t > 0, e.g.:

79

corner-dominant

corner-dominant’s parent

x2: pre-terminal node

corner-dominant

l2: left extent



Some terminology
• “Left extent”

• lt = the left corner of a pre-terminal node’s corner-dominant’s 
parent, for t > 0, e.g.:

80

corner-dominant

corner-dominant’s parent

x2: pre-terminal node

corner-dominant

l4: left extent



Some terminology
• “Dependency-range gate”

• 𝑔𝑖
𝑡 =ቊ

1, 𝑙𝑡 ≤ 𝑖 < 𝑡
0, 0 ≤ 𝑖 < 𝑙𝑡

 ,labels left extent of xt, e.g.:

81

corner-dominant’s parent
x2’s corner-dominant

x2

g2:    1           1          --          --           --         --          --           --

l2



Some terminology
• “Dependency-range gate”

• 𝑔𝑖
𝑡 =ቊ

1, 𝑙𝑡 ≤ 𝑖 < 𝑡
0, 0 ≤ 𝑖 < 𝑙𝑡

 ,labels left extent of xt, e.g.:

82

corner-dominant’s parent
x2’s corner-dominant

x4

g4:    0           0          1           1           --         --          --           --

l4



Some terminology
• “Height”

• h(w) = 1,
• h(n) = max

𝑚∈𝑇𝑛\𝑛 
ℎ 𝑚 + 1.

• Note: height is not depth, nor is it h(root)-depth.
Count from the bottom.

83

1 1 1 1 1 1 1 1

22 2 2 2 2 22

3 3 3

4 4

5
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Some terminology
• “Roark-Hollingshead (RH) distance”

• d(i) = di = ℎ 𝑤𝑖−1,𝑤𝑖 −2

ℎ 𝑟 −1
.

where h(w-1,w0) = h(wL-1,wL) = h(r)+1,
           h(u,v) = h(u ⊔ v) everywhere else (trees are CNF).
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0 1 2 3 4 5 6 7=L-1

4

5

6

d(0) = 6+1−2

6−1
= 1

d(2) = 5−2

6−1
=

3

5
 

d(4) = 4−2

6−1
=

2

5

“-1”



Quiz
• What’s d(5)?
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0 1 2 3 4 5 6 7=L-1“-1”



Roark-Hollingshead Conjecture

86

Q: How much of
this does this preserve?

Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo <end>

A: All of it (except labels)!
Very cool, because this is a 

“local” linear statistic for 
tree structures.



Some more terminology
• “Dependency range”

• α𝑖
𝑡 = 𝑠𝑖𝑔𝑛 𝑑𝑡−𝑑𝑖+1 +1

2
, where 𝑖 < 𝑡.

87α6:   1         0          1          
1

2
           0          

1

2
          --         --



PRPN’s big idea

88

α6:   1         0          1          
1

2
           0          

1

2
          --         --

g6:   0         0          0          0           0          1         --         --

𝑔𝑖
𝑡 = 𝑃 𝑙𝑡 ≤ 𝑖  ≈  ෑ

𝑗=𝑖+1

𝑡−1

α𝑗
𝑡 .

Why? See Shen et al. (2018)

0 1 2 3 4 5 6



PRPN’s big idea

89

𝑔𝑖
𝑡 = 𝑃 𝑙𝑡 ≤ 𝑖  ≈  ෑ

𝑗=𝑖+1

𝑡−1

α𝑗
𝑡 .

Why? See Shen et al. (2018)

0 1 2 3 4 5 6

α5:   1         1          1          1           
1

2
          --         --         --

g5:   1         1          1          1           1          --         --         --



PRPN:  Parse
• Soften up “Dependency range:”

• α𝑖
𝑡 = 𝑠𝑖𝑔𝑛 𝑑𝑡−𝑑𝑖+1 +1

2
, where 𝑖 < 𝑡, becomes:

• 𝛼𝑖
𝑡 =

ℎ𝑎𝑟𝑑𝑡𝑎𝑛ℎ((𝑑𝑡−𝑑𝑖+1)∙𝜏)

2
, where τ is temperature,

• and ℎ𝑎𝑟𝑑𝑡𝑎𝑛ℎ 𝑥 = max −1, min 1, 𝑥 .

• Then learn RH distance with a 2-layer convolution:

• 𝑞𝑡 = 𝑅𝑒𝐿𝑈 𝑊𝑞

𝑒𝑡−𝐿

𝑒𝑡−𝐿+1
⋯
𝑒𝑡

+ 𝑏𝑞 ,

• 𝑑𝑡 = 𝑅𝑒𝐿𝑈 𝑊𝑑𝑞𝑡 + 𝑏𝑑 .

• But we’re not going to supervise this with dt from actual trees…

90

Word vectors for wi-L, wi-L+1, … wi



PRPN:  Read

• Instead, we couple the input to memory states mi and use RH 
distance to interpolate mixtures of previous time steps into 
“summary vectors” that predict subsequent memory states:

• 𝑘𝑡 =  𝑊𝑚𝑚𝑡−1 +  𝑊𝑒𝑒𝑡,

• ҧ𝑠𝑖
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑚𝑖𝑘𝑡
𝑇

dim(𝑘)
,

• 𝑠𝑖
𝑡 =

𝑔𝑖
𝑡

σ𝑗 𝑔𝑗
𝑡 ҧ𝑠𝑖

𝑡 ,

•
ഥ𝑚𝑡

ҧ𝑐𝑡
= σ 

𝑖=1 

𝑡−1

𝑠𝑖
𝑡 ∙

𝑚𝑖

𝑐𝑖
,
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vector

Big idea: depends 
on di’s now

ҧ𝑐𝑡

ഥ𝑚𝑡

𝑒𝑡

                                      
𝑐𝑡

𝑚𝑡

 

LSTM

Recurrent update



PRPN:  Predict
• Task: predict the probability distribution of next word 𝑥𝑡+1.
• Now, we know m0,…,mt and e0,…,et, we need to predict et+1

• 𝑘𝑡 =  𝑊𝑚𝑚𝑡−1 +  𝑊𝑒𝑒𝑡,

• ҧ𝑠𝑖
𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

𝑚𝑖𝑘𝑡
𝑇

dim(𝑘)
,

• 𝑟𝑖
𝑡 =

𝑔𝑖
𝑡+1

σ𝑗 𝑔𝑗
𝑡+1 ҧ𝑠𝑖

𝑡 ,

• ҧ𝑙𝑡 = σ 
𝑖=𝑙𝑡+1 

𝑡−1

𝑟𝑖
𝑡 ∙ 𝑚𝑖

• Estimate 𝑑𝑡+1 ≈ 𝑅𝑒𝐿𝑈 ෩𝑊𝑑𝑚𝑡 + ෨𝑏𝑑 ,

• then estimate ǁ𝑒𝑡+1 = tanh(𝑊𝑓

ҧ𝑙𝑡

𝑚𝑡
+ 𝑏𝑓)

92

Depends on dt+1



PRPN Summary
Idea:
• Each word depends on its 

parent and its left siblings.
• Use 𝑔𝑖

𝑡
 to control the LM 

process
• Can’t directly model 𝑔𝑖

𝑡 
because lt is an unobserved 
latent variable.

• Use α𝑗
𝑡  to approximate 

𝑔𝑖
𝑡 based on RH distance dt.

• Use dt to reconstruct the trees.
• How good is PRPN?
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DOP: Data-Oriented Parsing

• DOP1 – Supervised DOP:
• Given an annotated corpus, use all subtrees, regardless of size, 

to parse new sentences.

94
° means substitute



DOP: Data-Oriented Parsing

• Multiple ways to substitute.
• The probability of a subtree t:

• The number of occurrences of t in 
the corpus,

• Divided by the total number of 
occurrences of all subtrees t' with 
the same root label as t.

• P(t1° … ° tn) = ς𝑖 𝑃(𝑡𝑖)
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DOP: Data-Oriented Parsing

• ML-DOP – maximum likelihood DOP:
• Use an EM algorithm to estimate P(t) in DOP.

• U-DOP – Unsupervised DOP:
• Simply use all possible subtrees as the “corpus.”

• UML-DOP
• Use randomly sampled possible subtrees as training data.
• Do ML-DOP.
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Performance on WSJ10
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Performance on PTB30+
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