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Announcements

• A1 release today (later in the afternoon).
• Essay 1 released – Due Sep 16.
• A1 Tutorials:

• T2: Fri, Sep 20.
• T3: Wed, Sep 25.
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Language Model

Probability( Some sentence over here. )

Models that estimate:
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Neural Models
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Image: 863 x 625 pixels Vectorize Predict

Dog!



Image vs. Natural Language
Vision (Image)
• Fixed input size (e.g., 960x720 pixels).
• Defined and continuous input 

range (RGB).

Natural Language
• Dynamic input sequence 

length.
• Discrete and large input space.

• GPT-2 tokenizer: 50257 tokens.
• LLaMA-3.1 tokenizer: 128000 

tokens.
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Neural Networks 

Probability( Some sentence over here. )?



Training Task 1: Next Token Prediction

The capital city of Canada is

Toronto
the
consultant
Ottawa
Frank
…
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RNN
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The capital city



Training Task 1: Next Token Prediction

10

The capital city of Canada is Ottawa



Training Task 2: Masked Language Modelling
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The capital city of [MASK] is Ottawa

Frank was surprised by [MASK] llamas

these vs. this

• MASK 15% of the tokens.
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Transformers

jalammar.github.io  13



Attention Mechanism
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Assignments Quiz Essays

0.75 0.1 0.15

Total = 0.75 * A + 0.1 * Q + 0.15 * E



Attention Mechanism
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Self Attention
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Self Attention
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I like eating apples

What is o(like)? I.e., the attention score from like to the sentence.
Q2

“like”

K1
“I”

K2
“like”

K3
“eating”

K4
“apples”

query

key

14.2 18.1 10.3 7.9
attention
weights*

attention
scores* (o) 0.3 0.6 0.07 0.03

*: made-up numbers, not real.



Self Attention

18

I like eating apples

What is z(like)?
attention
scores* (o) 0.3 0.6 0.07 0.03

*: made-up numbers, not real.

V1
“I”

V2
“like”

V3
“eating”

V4
“apples”

values

Z2
“like”

Weighted sum



Multi-Head Self Attention
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Transformers

jalammar.github.io  20

Typically
2-layer MLP



Residuals
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residual_mid

mlp_out + residual_mid
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BERT:
Pretrain-Finetune 
Paradigm
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Position Encoding
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Position Encoding

• Encodings of any two distinct positions are distinct
• Each position maps to only one encoding
• Test sentences may be longer than training
• Distance between two positions should be constant across 

sentences (of varying lengths).
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• Embeddings:
• Token + Sentence + Position

• Multi-Head Attention
• Feed forward module (MLP)
• Layers

Review



More Transformer in This Course

• Use Transformer Models to build all kinds of applications.
• Parser (A1!), Word sense, QA, LLMs…

• Why do Transformers work so well?
• Interpretability.

• How can we control them.
• Interpretability, model editing.
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