1

Dragomir

)

Radev, Dan Roth, David Smith and Jason Eisner

ing

CSC485/2501
Lecture 4

Dependency
Pars

®)
+—
@)
£
-]
(7]
i}
@©
>
>
VI
(<]
-l
| -
()
o0
@)
oc
>
O
7p]
O
O
»
c
@)
©
(0]
7]
@©
(a8}

Last lecture

S

/\

NP VP

T~ T

Det N V NP

I I | T~

The dog ate Det N
| |

the ice-cream

Constituent parsing:
* How words group together.
* Trees.

I prefer the morning flight through Denver

Dependency parsing:

* Binary grammatical relations
between the words.

* Graphs.

Dependency Grammar

Arc: from head to dependent. I prefer the morning flight through Denver

* Label on arc: grammatical

function cxamples: >

e Universal Dependencies (UD) nsubj Nominal subject United canceled the flight.
obj Direct object United diverted the flight to Reno.
* Dependency vs constituent: o, Indirect object We booked her the flight to Miami.
* More focus on semantics ccomp Clausalcomplement We took the morning flight.
* Free word order nmod Nominal modifier flight to Houston.

amod Adjectival modifier Book the cheapest flight

appos Appositional modifier United, a unit of UAL, matched
the fares.

det Determiner The flight was canceled.

https://universaldependencies.org/

Word Dependency Parsing

He reckons the current account deficit will narrow to only 1.8 billion in September.

. Part-of-speech tagging

He reckons the current account deficit will narrow to only 1.8 billion in September.
PRP VBZ DT 1 NN NN MD VB TO RB CD CD IN NNP

. Word dependency parsing

He reckons the current account deficit will narrow to only 1.8 billion in September .

SUBJ

ROOT

Dependency Graphs

* A dependency structure can be defined as a directed graph G:

* AsetV of nodes,
* Aset E of arcs (edges),
* Alinear precedence order<onV.

* Labelled graphs:
* Nodes in V are labelled with word forms (and annotation).
* Arcsin E are labelled with dependency types.

* Notational conventions (i, j € V):
c« i j=(ij)EE
i g=i=gVvdk:i =k k277

Formal Conditions on Dependency Graphs

* G is (weakly) connected:
* For every node ¢, there is a node 3 such that ¢ — 7 or 5 — ¢.
* Gisacyclic:
e If : — 5 then not 7 —™ 1.
* G obeys the single-head constraint:
 If 7 — 7, then not £ — 4, for any k # 7.
* Gis projective:
e Iti— j then? —* k, for any k such that : <k < jorj <k <au.
* No crossing edges.

Connectedness, Acyclicity and Single-Head

* |Intuitions:
e Syntactic structure is complete. [Connectedness]
* Syntactic structure is hierarchical. [Acyclicity]
* Every word has at most one syntactic head. [Single Head]

* Connectedness can be enforced by adding a special ROOT node.

ob] PC

nmod sbj nmod | nmod nmod

. L

. . \J . .
Economic news had little effect on financial markets

Projectivity

l’ (acl:relcl) \

(ob])
X det adv
v L J | ¥

JetBlue canceled our flight this morning which was already late

Projectivity

* Most theoretical frameworks do not assume projectivity.

* Non-projective structures are needed to account for:
* Long-distance dependencies,
* Free word order.

lacl:relcl |

bbb
[root | Lobl | //_ \ \
(obj)
e
L LJ | Y
JetBlue canceled our flight this morning which was already late

9

Transition-Based Dependency Parsing

Shift-Reduce Parsing:

e Data structures:

« Stack: [...,w]s of partially processed tokens
e Queue: [wj,...]Q of remaininginputtokens.

 Parsing actions built from atomic actions: Input buffer
e Adding arcs: (w; — w;, w; «— w;). Rl it
e Stack and queue operations.
.+ Left-to-right parsing in O(n) time. : }_77’ — e
* Restricted to projective Stack | | neon, RIGHTARC —*
dependency graphs. SHIET
« Non-projective: next week. - h ‘

Dependency
Relations

i.pl—'_\—l-hh

w3 w2

10

Yamada’s Algorithm

* Tree parsing actions:

Shift [: ']5 [Wf:q° . ']Q
...,wils [...]o
Right ..., w, W_,-; 0
[y Wi Q Wi — W
| eft [.., Wi, WJ‘;S . Q
[....owils [-] wi < w;

* Algorithm variants:

* Originally developed for Japanese (strictly head-final) with only the Shift and Left
actions [Kudo and Matsumoto 2002].

* Adapted for English (with mixed headedness) by adding the Left action [Yamada
and Matsumoto 2003].

11

Stack: [root]
Example Queue:[Book, me, the, morning, flight]

[root]s [Book me the morning flight],

12

Stack: [root, Book]
Example Queue:[me, the, morning, flight]

[root Book]s [me the morning flight],

Shift

13

Stack: [root, Book, me]

Example Queue:[the, morning, flight]

[root Book me]s [the morning flight],

Shift

14

Stack: [root, Book]
Example Queue:[the, morning, flight]

iobj

|

[root Book]s me [the morning flight],

Right

15

Stack: [root, Book, the]
Example Queue:[morning, flight]

iobj

]

[root Book me the]s [morning flight],

Shift

16

Stack: [root, Book, the, morning]

Example Queue:[flight]

iobj

]

[root Book me the morning]s [flight],

Shift

17

Stack: [root, Book, the, morning, flight]
Example Queue:| |

iobj

]

[root Book me the morning flight]s [],

Shift

18

Stack: [root, Book, the, flight]
Example Queue:| |

iobj compound

e

[root Book me the morning flight]s [],

Left

19

Stack: [root, Book, flight]
Example Queue:| |

det

iobj ‘ compound \

[root Book me the morning flight]s [],

Left

20

Stack: [root, Book]
Example Queue:| |

det

iobj ‘ compound \

[root Book me the morning flight]s [],

Right

21

Stack: [root]
Example Queue:[]

obj

det
root iobj ‘ compound \

[root Book me the morning flight]s [],

Donel!

22

Classifier-Based Parsing

* Data-driven deterministic parsing:
* Deterministic parsing requires an oracle.

Input buffer -

* An oracle can be approximated by a classifier. Parser Oracle
Wl...
* A classifier can be trained using treebank data. LN Action | Dependency
w » Relations
. s sTl | [e6D))| FEN |2 LEFTARC
* Learning methods: stock fol_2[| Le62 %BUJH FGHTARG |52
* Support vector machines (SVM)
[Kudo and Matsumoto 2002, Yamada and Matsumoto 2003, s
Isozaki et al. 2004, Cheng et al. 2004, Nivre et al. 2006]
: C ENCODER)
* Memory-based learning (MBL) A A A
w W w w w5 wé

[Nivre et al. 2004, Nivre and Scholz 2004]

* Maximum entropy modelling (MaxEnt)
[Cheng et al. 2005]

e Neural networks
[You! 2024] A1

23

Dendrites

Neural Network

* |Input can be:
e Scalar number

* Vector of Real numbers e
* Vector of Binary I
* Outputs can be
* Linear, single output (Linear)
* Linear, multiple outputs (Linear)
* Single output binary (Logistics)
* Multi output binary (Logitics)

1 of k Multinomial output (Softmax)
(categorical)

1
1
1
1
1
1
1
1
1
1
"
- Linear Activation
function function

24

Neural Network

Inputs

X
input
vector

A J

Activation
function

Linear
function

W
Model
weights

f(b -+ Z in’wi)

1=1

Sigmoid
1.0

Q
—
8
—
Il
+ —

m\

= f(x- W)

Tanh
1.0
e —e”
al\Z)=
0.5 (2= =
-10 5 Y 5 10
-0,
0
(b)

LeakyRelLU(a=0.2)
10

LeakyReLU(z) =

=10 =5 5 10
(a)
ReLU
10

ReLU(z)= sy

T 0, otherwise s/

=10 =5 30 5 10
(c)

+b

z,z>0

az,otherwise

25

Neural Network

Inputs

1
1
1
1
1
1
1
1
1
1
"
Linear Activation
function function

()

X "'/
input Model
vector weights

26

Neural Network

v
/ .
’ |} 1 N \
\4
; 3 Y g
. ' h N
P | \ R ¥
y

a(()l)= G(WOO Cl() + Wo1 a(o) + bo)

agl): o(wyo a, a4 Wqq a(o) + by)

a§1)= o(wyo a () 4+ W1 a(o) + b,)

a§1)= G(W30 () + W31 a(o) -+ b3)

(l)— G(ZN‘ ' wj; agl_l) + bj)

27

Gradient Descent

* Each neuron: n
« Weight matrix. /(b+ Z ziw;) = f(x- W) +b
* Bias term. 1=1
* How to determine the model parameters?

* Strategy:
* Compute the error at the output.

* Determine the contribution of each
parameter to the error by taking the
differential of error w.r.t. the parameter.

* Update the parameter commensurate
with the error it contributed.

* Mountain analogy:
* Error of every param. combination: contour map. §

* Slope: gradient of error.
* Blindly going down hill > you will reach a lower place (local minimum of error). 28

Assignment 1

* Q1: transition-based parsing

* Wednesday (L3) and today’s (L4) lecture!
* Q2: graph-based parsing

* Next Monday (L5).

29

	Slide 1: Dependency Parsing
	Slide 2
	Slide 3: Dependency Grammar
	Slide 4: Word Dependency Parsing
	Slide 5: Dependency Graphs
	Slide 6: Formal Conditions on Dependency Graphs
	Slide 7: Connectedness, Acyclicity and Single-Head
	Slide 8: Projectivity
	Slide 9: Projectivity
	Slide 10: Transition-Based Dependency Parsing
	Slide 11: Yamada’s Algorithm
	Slide 12: Example
	Slide 13: Example
	Slide 14: Example
	Slide 15: Example
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 19: Example
	Slide 20: Example
	Slide 21: Example
	Slide 22: Example
	Slide 23: Classifier-Based Parsing
	Slide 24: Neural Network
	Slide 25: Neural Network
	Slide 26: Neural Network
	Slide 27: Neural Network
	Slide 28: Gradient Descent
	Slide 29: Assignment 1

