
Dependency
Parsing II

CSC485/2501
Lecture 5

Based on slides by Roger Levy, Yuji Matsumoto,
Dragomir Radev, Dan Roth, David Smith and Jason Eisner

1

Edge-Factored Parsers

• Log-linear models great for n-way classification.
• Also good for predicting sequences.

• Also good for dependency parsing

2

Edge-Factored Parsers (McDonald et al. 2005)

• Is this a good edge?

3

“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen

Edge-Factored Parsers (McDonald et al. 2005)

• Is this a good edge?

4

“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen

jasný ← den
 (“bright day”)

V A A A N J N V C

Edge-Factored Parsers (McDonald et al. 2005)

• Is this a good edge?

5

“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen

jasný ← den
 (“bright day”)

jasný ← N
 (“bright NOUN”)

V A A A N J N V C

Edge-Factored Parsers (McDonald et al. 2005)

• Is this a good edge?

6

“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen

jasný ← den
 (“bright day”)

jasný ← N
 (“bright NOUN”)

A ← N

V A A A N J N V C

Edge-Factored Parsers (McDonald et al. 2005)

• Is this a good edge?

7

“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen

jasný ← den
 (“bright day”)

jasný ← N
 (“bright NOUN”)

A ← N

A ← N
Preceding

conjunction

V A A A N J N V C

Edge-Factored Parsers (McDonald et al. 2005)

• How about this one?

8

“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen
V A A A N J N V C

Edge-Factored Parsers (McDonald et al. 2005)

• How about this one?

9

was bright cold April day and clock striking thirteen

jasný ← hodiny
(“bright clocks”)

... undertrained ...

jasn ← hodi
(“bright clock”)
stem only: no

“It was a bright cold day in April and the clocks were striking thirteen.”

POS: V A A A N J N V C
Stem: byl jasn stud dubn den a hodi odbí třin

Edge-Factored Parsers (McDonald et al. 2005)

• How about this one?

10
“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen
POS: V A A A N J N V C

jasný ← hodiny
(“bright clocks”)

... undertrained ...

jasn ← hodi
(“bright clock”)
stem only: no Aplural ← Nsingular

Stem: byl jasn stud dubn den a hodi odbí třin

Edge-Factored Parsers (McDonald et al. 2005)

• How about this one?

11
“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen
POS: V A A A N J N V C

jasný ← hodiny
(“bright clocks”)

... undertrained ...

jasn ← hodi
(“bright clock”)
stem only: no Aplural ← Nsingular

Stem: byl jasn stud dubn den a hodi odbí třin

A ← N
Where N follows a

conjunction

Edge-Factored Parsers (McDonald et al. 2005)

• Which edge is better?
• “bright day” or “bright clocks”?

12
“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen
POS: V A A A N J N V C

Stem: byl jasn stud dubn den a hodi odbí třin

Edge-Factored Parsers (McDonald et al. 2005)

• Which edge is better?
• Score of an edge:
• Standard algorithms: valid parse with max total score.

13
“It was a bright cold day in April and the clocks were striking thirteen.”

was bright cold April day and clock striking thirteen
POS: V A A A N J N V C

Stem: byl jasn stud dubn den a hodi odbí třin

our current weight vector

Edge-Factored Parsers (McDonald et al. 2005)

• Which edge is better?
• Score of an edge:
• Standard algorithms: valid parse with max total score.

14

our current weight vector

Non-Projective Parses

15

Non-Projective Parses

16

English: non-projectivity occasionally

That glory may-know my going-gray
(i.e., it shall last till I go gray)

Frequent non-projectivity in Latin, etc.

Non-Projective Parsing Algorithms

17

McDonald’s Approach (non-projective)
• Example: “ Jonh saw Mary ”
• We can use the Chu-Liu-Edmonds (CLE) algorithm to find the

maximum-weight spanning tree.
• Can be non-projective!

• Can be found in time O(n2).

18

The maximum-weight spanning tree.
The best parse with the highest score!

Chu-Liu-Edmonds - Contracting Stage
• For each non-ROOT node v , set bestInEdge[v] to be its highest

scoring incoming edge.
• If a cycle C is formed:

• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u from

outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no cycles
are formed.

19

20

• For each non-ROOT node v , set bestInEdge[v] to be its
highest scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

21

• For each non-ROOT node v , set bestInEdge[v] to be its
highest scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

22

• For each non-ROOT node v , set bestInEdge[v] to be its
highest scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

23

• For each non-ROOT node v , set bestInEdge[v] to be its highest
scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

24

• For each non-ROOT node v , set bestInEdge[v] to be its highest
scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

25

• For each non-ROOT node v , set bestInEdge[v] to be its
highest scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

26

• For each non-ROOT node v , set bestInEdge[v] to be its
highest scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

27

• For each non-ROOT node v , set bestInEdge[v] to be its highest
scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

28

• For each non-ROOT node v , set bestInEdge[v] to be its
highest scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

29

• For each non-ROOT node v , set bestInEdge[v] to be its highest
scoring incoming edge.

• If a cycle C is formed:
• contract the nodes in C into a new node vC
• edges outgoing from any node in C now get source vC
• edges incoming to any node in C now get destination vC
• For each node u in C , and for each edge e incoming to u

from outside of C:
• add to e.kicksOut the edge bestInEdge[u], and
• set e.score to be e.score − e.kicksOut.score.

• Repeat until every non-ROOT node has an incoming edge and no
cycles are formed.

Chu-Liu-Edmonds - Expanding Stage

• After the contracting stage, every contracted node will have
exactly one bestInEdge. This edge will kick out one edge inside
the contracted node, breaking the cycle.
• Go through each bestInEdge of e in the reverse order that we

added them
• lock down e and remove every edge in kicksOut(e) from
bestInEdge.

30

31

• Go through each bestInEdge of e in the reverse
order that we added them

• lock down e and remove every edge in
kicksOut(e) from bestInEdge.

32

• Go through each bestInEdge of e in the reverse
order that we added them

• lock down e and remove every edge in
kicksOut(e) from bestInEdge.

33

• Go through each bestInEdge of e in the reverse
order that we added them

• lock down e and remove every edge in
kicksOut(e) from bestInEdge.

34

• Go through each bestInEdge of e in the reverse
order that we added them

• lock down e and remove every edge in
kicksOut(e) from bestInEdge.

35

• Go through each bestInEdge of e in the reverse
order that we added them

• lock down e and remove every edge in
kicksOut(e) from bestInEdge.

36

• Go through each bestInEdge of e in the reverse
order that we added them

• lock down e and remove every edge in
kicksOut(e) from bestInEdge.

Evaluation

• For a sequence labelling task (e.g., PoS tagging), evaluation is
straightforward.
• Exact match (EM) accuracy.

37

1. Unionized VBN JJ
2. workers NNS NNS
3. are VBP VBP
4. usually RB RB
5. better RBR RBR
6. paid VBN VBN
7. than IN IN
8. their PRP$ PRP$
9. non-union JJ JJ
10. counterparts NNS NNS

ModelCorrect

EM Acc
= Correct / Total

= 90%

Evaluation

• What about dependency parses?

• Solution: count # words are correctly connected to their heads.

38

Evaluation: Unlabeled dependency accuracy (UAS)

39

(a) Reference (b) System

1 book 0 0

2 me 1 4

3 the 4 4

4 flights 1 1

5 through 6 6

6 Houston 4 4

Accuracy
= 5/6 = 83.3%

Evaluation: Labeled dependency accuracy (LAS)

40

(a) Reference (b) System

head label head label

1 book 0 root 0 root

2 me 1 iobj 4 nsubj

3 the 4 det 4 det

4 flights 1 obj 1 xcomp

5 through 6 case 6 case

6 Houston 4 nmod 4 nmod

Accuracy
= 4/6 = 66.7%

	Slide 1: Dependency Parsing II
	Slide 2: Edge-Factored Parsers
	Slide 3: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 4: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 5: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 6: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 7: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 8: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 9: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 10: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 11: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 12: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 13: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 14: Edge-Factored Parsers (McDonald et al. 2005)
	Slide 15: Non-Projective Parses
	Slide 16: Non-Projective Parses
	Slide 17: Non-Projective Parsing Algorithms
	Slide 18: McDonald’s Approach (non-projective)
	Slide 19: Chu-Liu-Edmonds - Contracting Stage
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Chu-Liu-Edmonds - Expanding Stage
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Evaluation
	Slide 38: Evaluation
	Slide 39: Evaluation: Unlabeled dependency accuracy (UAS)
	Slide 40: Evaluation: Labeled dependency accuracy (LAS)

