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Edge-Factored Parsers

• Log-linear models great for n-way classification.
• Also good for predicting sequences.

• Also good for dependency parsing
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Edge-Factored Parsers (McDonald et al. 2005)

• Is this a good edge?
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“It was a bright cold day in April and the clocks were striking thirteen.”

was    bright      cold            April         day and clock      striking      thirteen
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jasný ← den
 (“bright day”)

V          A               A                   A              N       J        N                V                   C
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“It was a bright cold day in April and the clocks were striking thirteen.”

was    bright      cold            April         day and clock      striking      thirteen

jasný ← den
 (“bright day”)

jasný ← N
 (“bright NOUN”)

A ← N

A ← N
Preceding 

conjunction

V          A               A                   A              N       J        N                V                   C



Edge-Factored Parsers (McDonald et al. 2005)

• How about this one?
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was    bright      cold            April         day and clock      striking      thirteen

jasný ← hodiny
(“bright clocks”)

... undertrained ...

jasn ← hodi
(“bright clock”)
stem only: no

“It was a bright cold day in April and the clocks were striking thirteen.”

POS:            V          A               A                   A              N       J        N                V                   C
Stem:         byl      jasn        stud            dubn       den     a     hodi           odbí            třin
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• How about this one?
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“It was a bright cold day in April and the clocks were striking thirteen.”

was    bright      cold            April         day and clock      striking      thirteen
POS:            V          A               A                   A              N       J        N                V                   C

jasný ← hodiny
(“bright clocks”)

... undertrained ...

jasn ← hodi
(“bright clock”)
stem only: no Aplural ← Nsingular

Stem:         byl      jasn        stud            dubn       den     a     hodi           odbí            třin



Edge-Factored Parsers (McDonald et al. 2005)

• How about this one?
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“It was a bright cold day in April and the clocks were striking thirteen.”

was    bright      cold            April         day and clock      striking      thirteen
POS:            V          A               A                   A              N       J        N                V                   C

jasný ← hodiny
(“bright clocks”)

... undertrained ...

jasn ← hodi
(“bright clock”)
stem only: no Aplural ← Nsingular

Stem:         byl      jasn        stud            dubn       den     a     hodi           odbí            třin

A ← N
Where N follows a 

conjunction



Edge-Factored Parsers (McDonald et al. 2005)

• Which edge is better?
• “bright day” or “bright clocks”?
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“It was a bright cold day in April and the clocks were striking thirteen.”

was    bright      cold            April         day and clock      striking      thirteen
POS:            V          A               A                   A              N       J        N                V                   C

Stem:         byl      jasn        stud            dubn       den     a     hodi           odbí            třin



Edge-Factored Parsers (McDonald et al. 2005)

• Which edge is better?
• Score of an edge:
• Standard algorithms: valid parse with max total score.
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“It was a bright cold day in April and the clocks were striking thirteen.”

was    bright      cold            April         day and clock      striking      thirteen
POS:            V          A               A                   A              N       J        N                V                   C

Stem:         byl      jasn        stud            dubn       den     a     hodi           odbí            třin

our current weight vector
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our current weight vector



Non-Projective Parses
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Non-Projective Parses
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English: non-projectivity occasionally

That glory may-know my going-gray
(i.e., it shall last till I go gray)

Frequent non-projectivity in Latin, etc.



Non-Projective Parsing Algorithms
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McDonald’s Approach (non-projective)
• Example: “ Jonh saw Mary ”
• We can use the Chu-Liu-Edmonds (CLE) algorithm to find the 

maximum-weight spanning tree.
• Can be non-projective!

• Can be found in time O(n2).
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The maximum-weight spanning tree.
The best parse with the highest score!



Chu-Liu-Edmonds - Contracting Stage
• For each non-ROOT node v , set bestInEdge[v] to be its highest 

scoring incoming edge. 
• If a cycle C is formed: 

• contract the nodes in C into a new node vC 
• edges outgoing from any node in C now get source vC 
• edges incoming to any node in C now get destination vC 
• For each node u in C , and for each edge e incoming to u from 

outside of C: 
• add to e.kicksOut the edge bestInEdge[u], and 
• set e.score to be e.score − e.kicksOut.score. 

• Repeat until every non-ROOT node has an incoming edge and no cycles 
are formed.
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Chu-Liu-Edmonds - Expanding Stage

• After the contracting stage, every contracted node will have 
exactly one bestInEdge. This edge will kick out one edge inside 
the contracted node, breaking the cycle.
• Go through each bestInEdge of e in the reverse order that we 

added them
• lock down e and remove every edge in kicksOut(e) from 
bestInEdge.
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• Go through each bestInEdge of e in the reverse 
order that we added them

• lock down e and remove every edge in 
kicksOut(e) from bestInEdge.
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• Go through each bestInEdge of e in the reverse 
order that we added them

• lock down e and remove every edge in 
kicksOut(e) from bestInEdge.



Evaluation

• For a sequence labelling task (e.g., PoS tagging), evaluation is 
straightforward.
• Exact match (EM) accuracy.
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1.  Unionized       VBN        JJ 
2.  workers         NNS        NNS 
3.  are             VBP        VBP 
4.  usually         RB         RB  
5.  better          RBR        RBR 
6.  paid            VBN        VBN 
7.  than            IN         IN  
8.  their           PRP$       PRP$
9.  non-union       JJ         JJ  
10. counterparts    NNS        NNS 

ModelCorrect

EM Acc
= Correct / Total

= 90%



Evaluation

• What about dependency parses?

• Solution: count # words are correctly connected to their heads.
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Evaluation: Unlabeled dependency accuracy (UAS)
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(a) Reference (b) System

1 book 0 0

2 me 1 4

3 the 4 4

4 flights 1 1

5 through 6 6

6 Houston 4 4

Accuracy
= 5/6 = 83.3%



Evaluation: Labeled dependency accuracy (LAS)

40

(a) Reference (b) System

head label head label

1 book 0 root 0 root

2 me 1 iobj 4 nsubj

3 the 4 det 4 det

4 flights 1 obj 1 xcomp

5 through 6 case 6 case

6 Houston 4 nmod 4 nmod

Accuracy
= 4/6 = 66.7%
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