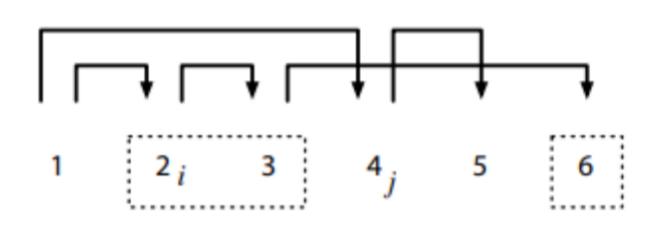

Gap Degree

- gd(tree) = max(gd(token) for token in tree)
- How to compute gd(token) by hand?

Gap degree



For gd(t2):

- 1. Put every t2's dependent (t4, t6) in boxes
- 2. Create a mask (1 for the boxed tokens, 0 for the unboxed tokens)
- 3. Count the gaps!

Answer: gd(t2) = 2

Gap degree

- The size of the gap doesn't matter.
- More than one consecutive zeros: 1 gap.

Answer: gd(t2) = 1

Course Content Survey

- Don't forget to submit before reading week: <u>https://forms.gle/AeT3QFGnT8CLdZF77</u>
- Basically free 1% bonus mark.

Most common topics and feedbacks

- Transformers:
 - Word embedding not thoroughly covered in class
 - How NLP application is built from beginning to end (like train.py)
 - Still, not clear enough after the second lecture
- LLM:
 - Just LLM in general
 - ChatGPT o1
 - Chain-of-thought
 - Why LLMs work?
 - Why LLMs don't work?
 - Hallucination

- LLM + Linguistics:
 - Multilingual

Now to Reading Week

- Lexical Semantics
- → WSD
 - Define the task
 - Classics: Lesk & Yarowsky
- → Vector Semantics
 - word embedding
 - language modelling
- → BERT & LLM
- → Interpretability
 - Why LLMs work
 - Why LLMs don't work

A2: From WSD to Interpretability After reading week: (order may change)

- Fancy parsing
 - Parsing with features
 - Statistical parsing
 - Unsupervised parsing
- Question answering
- Information Extraction
- Ambiguity & anaphora

Other suggestions and topics

• Things we will not cover: As we mentioned in the first lecture:

```
Speech (CSC401/2511)
Ethics (CSC401/2511)
Self-study resources
```

- Multi-modal LM, CLIP,...
 - General idea → in BERT & LLM lecture
 - Details
 - Background knowledge from computer vision and computer graphics
 - Self-study resources

General feedback

- More ways of self-study
- More concrete examples
- Clear definition of terms and concepts