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Assignment 1
Updated code available on MarkUs

Due on Thursday Oct. 3rd, at 11:59 pm.

You should work on your code through the teach.cs server, details here. The instructor also has 

information on how to use GPUs on the server. 

https://markus.teach.cs.toronto.edu/markus/courses/21/assignments/30
https://www.cs.toronto.edu/~niu/csc485/cluster/


Assignment 1
Part 1: Implement your own transition-based dependency parser

Part 2: Implement your own graph-based dependency parser
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Part 1: Transition-based parser

Tutorial overview

Dependency parsing example with a transition-based parser

Gap degree example

Neural dependency parser with PyTorch  pointers



Dependency parser: when given a sentence, it outputs a dependency parse tree.

Three things to keep track of:

1. A stack of  words being processed.

2. A buffer of  words to be eventually pushed onto the stack.

3. A list of  predicted dependencies (i.e. arcs).

Dependency parser

Dependency parsing Gap Degree Neural Dependency



Transition-based Parser

Three possible operations:

1.  SHIFT: removes the first word from the buffer and pushes it onto the stack.

2.  LEFT-ARC: marks the second-from-top item (i.e., second-most recently 

added word) on the stack as a dependent of  the first item and removes the 

second item from the stack.

3.  RIGHT-ARC: marks the top item (i.e., most recently added word) on the 

stack as a dependent of  the second item and removes the first item from the 

stack.
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SHIFT Operation

Removes the first word from the buffer and pushes it onto the stack.

▪ Step T:

– Stack: [ROOT, Stacy, ran];  Buffer: [5k, today]

▪ Step T+1:

– Stack: [ROOT, Stacy, ran, 5k];  Buffer: [today]

– Action: SHIFT
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LEFT-ARC Operation

Marks the second-from-top item (i.e., second-most recently added word) on the 

stack as a dependent of  the first item and removes the second item from the stack.

▪ Step T:

– Stack: [ROOT, Stacy, ran];  Buffer: [5k, today]

▪ Step T+1:

– Stack: [ROOT, ran];  Buffer: [5k, today]

– New Dependency: ran -> Stacy, nsubj

– Action: LEFT-ARC
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RIGHT-ARC Operation

Marks the top item (i.e., most recently added word) on the stack as a dependent of  

the second item and removes the first item from the stack.

▪ Step T:

– Stack: [ROOT, ran, 5k];  Buffer: [today]

▪ Step T+1:

– Stack: [ROOT, ran];  Buffer: [today]

– New Dependency: ran -> 5k, dobj

– Action: RIGHT-ARC
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▪ Given a dependency tree, figure out the intermediate parsing steps.

▪ Check the top of  your stack to see whether it is appropriate to create an arc.

▪ After creating an arc, record it, and then remove the dependent word from the 

stack.

Dependency Parsing Example
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▪ Step 0:

– Stack: [ROOT];  Buffer: [John, saw, dogs, yesterday]
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▪ Step 0:

– Stack: [ROOT];  Buffer: [John, saw, dogs, yesterday]

▪ Step 1:

– Stack: [ROOT, John];  Buffer: [saw, dogs, yesterday]

– New Dependency: None

– Action: SHIFT
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▪ From Step 1:

– Stack: [ROOT, John];  Buffer: [saw, dogs, yesterday]

▪ Step 2:

– Stack: [ROOT, John, saw];  Buffer: [dogs, yesterday]

– New Dependency: None

– Action: SHIFT
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▪ From Step 2:

– Stack: [ROOT, John, saw];  Buffer: [dogs, yesterday]

▪ Step 3:

– Stack: [ROOT, saw];  Buffer: [dogs, yesterday]

– New Dependency: saw -> John, nsubj

– Action: LEFT-ARC

For this assignment:
Choose LEFT-ARC over SHIFT 
when both are valid and generate the 
same tree.
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▪ From Step 3:

– Stack: [ROOT, saw];  Buffer: [dogs, yesterday]

▪ Step 4:

– Stack: [ROOT, saw, dogs];  Buffer: [yesterday]

– New Dependency: None

– Action: SHIFT

Dependency parsing Gap Degree Neural Dependency



▪ From Step 4:

– Stack: [ROOT, saw, dogs];  Buffer: [yesterday]

▪ Step 5:

– Stack: [ROOT, saw];  Buffer: [yesterday]

– New Dependency: saw -> dogs, dobj

– Action: RIGHT-ARC
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▪ From Step 5:

– Stack: [ROOT, saw];  Buffer: [yesterday]

▪ Step 6:

– Stack: [ROOT, saw, yesterday];  Buffer: []

– New Dependency: None

– Action: SHIFT
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▪ From Step 6:

– Stack: [ROOT, saw, yesterday];  Buffer: []

▪ Step 7:

– Stack: [ROOT, saw];  Buffer: []

– New Dependency: saw -> yesterday, npadvmod

– Action: RIGHT-ARC
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▪ From Step 7:

– Stack: [ROOT, saw];  Buffer: []

▪ Step 8:

– Stack: [ROOT];  Buffer: []

– New Dependency: ROOT -> saw, root

– Action: RIGHT-ARC
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▪ We’ve figured out all the parsing steps!

▪ Similar exercise in the assignment.

▪ How to do this algorithmically? What are the conditions?
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▪ The gap degree of  a word in a dependency tree is the least k for which the 
subsequence consisting of  the word and its descendants (both direct and indirect) 
is entirely comprised of  k + 1 maximally contiguous substrings. 

▪ The gap degree of  a word is the number of  gaps in the subsequence formed by the 
word and all its descendants, regardless of  the size of  the gaps. 

▪ The gap degree of  a dependency tree is the greatest gap degree of  any word in 
the tree. 

Gap Degree Example
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▪ For each word, check the substring consisting itself  and all its descendants:

– ROOT: ROOT John saw dogs yesterday

– John: John

– saw: John saw dogs yesterday 

– dogs: dogs

– yesterday: yesterday
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All substrings are 
contiguous

k=0
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Marco Kuhlmann and Joakim Nivre. 2006. Mildly Non-Projective Dependency Structures. In Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 507–514, Sydney, Australia. Association for Computational Linguistics.

Gap degree = 0 Gap degree = 1 Gap degree = 2

https://aclanthology.org/P06-2066


▪ Now assume we don’t have the dependency tree.

Neural Dependency Parser
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▪ Now assume we don’t have the dependency tree.

▪ When do we need to make decisions when parsing?

Neural Dependency Parser
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▪ Suppose we have the following partial parse:

– Stack: [ROOT, John, saw];  Buffer: [dogs, yesterday]

▪ Now we need to decide which transition to do next:

a) SHIFT: Shift dogs onto the stack

b) LEFT-ARC: create the arc: saw -> john

c) RIGHT-ARC: create the arc john -> saw

Neural Dependency Parser
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▪ Use a neural network to make a prediction at each parse step.

▪ Implement this in PyTorch, read the docs and refer back to the tutorial if  

you’re not familiar:

– https://pytorch.org/docs/stable/index.html 

Neural Dependency Parser
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https://pytorch.org/docs/stable/index.html


▪ Input: Word level features (e.g. word embeddings) for each word in the 

sentence.

▪ One linear (fully-connected) hidden layer.

▪ A softmax layer to obtain a probability distribution over transitions.

Neural Dependency Parser
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▪ Input: Word level features (e.g. word embeddings) for each word in the 

sentence.

– torch.nn.Embedding(size, shape)

– torch.nn.Embedding.from_pretrained(…)

▪ Make sure you DON’T freeze the pre-trained embeddings!!

Neural Dependency Parser
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▪ One linear (fully-connected) hidden layer.

– hidden_layer = torch.nn.Linear(input_size, output_size)

– To apply: hidden_layer(features)

You can also checkout torch.nn.relu(…) and torch.nn.dropout(…)

Neural Dependency Parser
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▪ A softmax layer to obtain a probability distribution over transitions.

– torch.nn.CrossEntropyLoss / torch.nn.functional.CrossEntropy

Neural Dependency Parser
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▪ Suppose our neural network gives us an answer:

a) SHIFT: Shift dogs onto the stack

b) LEFT-ARC: create the arc: saw -> john

c) RIGHT-ARC: create the arc john -> saw

▪ How can we tell whether we have made the right choice?

Neural Dependency Parser
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▪ How can we tell whether we have made the right choice?

– Implement an “oracle” that peaks into the parsed tree and tells us the correct transition 

to make.

▪ Think about the first example we did in this tutorial.

– How to make the process automatic?

– What conditions need to be met to make a particular transition?

Neural Dependency Parser
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So…
One pitfall of  the transition-based parser is that it can only handle projective parse trees (you can try 

to think about why this is)

Next time, we will look at graph-based dependency parsing, which accounts for non-projective trees. 
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