
CSC485/2501 A1 Tutorial 2

Zixin Zhao

Assignment 1
Updated code available on MarkUs

Due on Thursday Oct. 3rd, at 11:59 pm.

You should work on your code through the teach.cs server, details here. The instructor also has

information on how to use GPUs on the server.

https://markus.teach.cs.toronto.edu/markus/courses/21/assignments/30
https://www.cs.toronto.edu/~niu/csc485/cluster/

Assignment 1
Part 1: Implement your own transition-based dependency parser

Part 2: Implement your own graph-based dependency parser

Assignment 1
Part 1: Implement your own transition-based dependency parser

Part 2: Implement your own graph-based dependency parser

Part 1: Transition-based parser

Tutorial overview

Dependency parsing example with a transition-based parser

Gap degree example

Neural dependency parser with PyTorch pointers

Dependency parser: when given a sentence, it outputs a dependency parse tree.

Three things to keep track of:

1. A stack of words being processed.

2. A buffer of words to be eventually pushed onto the stack.

3. A list of predicted dependencies (i.e. arcs).

Dependency parser

Dependency parsing Gap Degree Neural Dependency

Transition-based Parser

Three possible operations:

1. SHIFT: removes the first word from the buffer and pushes it onto the stack.

2. LEFT-ARC: marks the second-from-top item (i.e., second-most recently

added word) on the stack as a dependent of the first item and removes the

second item from the stack.

3. RIGHT-ARC: marks the top item (i.e., most recently added word) on the

stack as a dependent of the second item and removes the first item from the

stack.

Dependency parsing Gap Degree Neural Dependency

SHIFT Operation

Removes the first word from the buffer and pushes it onto the stack.

▪ Step T:

– Stack: [ROOT, Stacy, ran]; Buffer: [5k, today]

▪ Step T+1:

– Stack: [ROOT, Stacy, ran, 5k]; Buffer: [today]

– Action: SHIFT

Dependency parsing Gap Degree Neural Dependency

LEFT-ARC Operation

Marks the second-from-top item (i.e., second-most recently added word) on the

stack as a dependent of the first item and removes the second item from the stack.

▪ Step T:

– Stack: [ROOT, Stacy, ran]; Buffer: [5k, today]

▪ Step T+1:

– Stack: [ROOT, ran]; Buffer: [5k, today]

– New Dependency: ran -> Stacy, nsubj

– Action: LEFT-ARC

Dependency parsing Gap Degree Neural Dependency

RIGHT-ARC Operation

Marks the top item (i.e., most recently added word) on the stack as a dependent of

the second item and removes the first item from the stack.

▪ Step T:

– Stack: [ROOT, ran, 5k]; Buffer: [today]

▪ Step T+1:

– Stack: [ROOT, ran]; Buffer: [today]

– New Dependency: ran -> 5k, dobj

– Action: RIGHT-ARC

Dependency parsing Gap Degree Neural Dependency

▪ Given a dependency tree, figure out the intermediate parsing steps.

▪ Check the top of your stack to see whether it is appropriate to create an arc.

▪ After creating an arc, record it, and then remove the dependent word from the

stack.

Dependency Parsing Example

Dependency parsing Gap Degree Neural Dependency

▪ Step 0:

– Stack: [ROOT]; Buffer: [John, saw, dogs, yesterday]

Dependency parsing Gap Degree Neural Dependency

▪ Step 0:

– Stack: [ROOT]; Buffer: [John, saw, dogs, yesterday]

▪ Step 1:

– Stack: [ROOT, John]; Buffer: [saw, dogs, yesterday]

– New Dependency: None

– Action: SHIFT

Dependency parsing Gap Degree Neural Dependency

▪ From Step 1:

– Stack: [ROOT, John]; Buffer: [saw, dogs, yesterday]

▪ Step 2:

– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

– New Dependency: None

– Action: SHIFT

Dependency parsing Gap Degree Neural Dependency

▪ From Step 2:

– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Step 3:

– Stack: [ROOT, saw]; Buffer: [dogs, yesterday]

– New Dependency: saw -> John, nsubj

– Action: LEFT-ARC

For this assignment:
Choose LEFT-ARC over SHIFT
when both are valid and generate the
same tree.

Dependency parsing Gap Degree Neural Dependency

▪ From Step 3:

– Stack: [ROOT, saw]; Buffer: [dogs, yesterday]

▪ Step 4:

– Stack: [ROOT, saw, dogs]; Buffer: [yesterday]

– New Dependency: None

– Action: SHIFT

Dependency parsing Gap Degree Neural Dependency

▪ From Step 4:

– Stack: [ROOT, saw, dogs]; Buffer: [yesterday]

▪ Step 5:

– Stack: [ROOT, saw]; Buffer: [yesterday]

– New Dependency: saw -> dogs, dobj

– Action: RIGHT-ARC

Dependency parsing Gap Degree Neural Dependency

▪ From Step 5:

– Stack: [ROOT, saw]; Buffer: [yesterday]

▪ Step 6:

– Stack: [ROOT, saw, yesterday]; Buffer: []

– New Dependency: None

– Action: SHIFT

Dependency parsing Gap Degree Neural Dependency

▪ From Step 6:

– Stack: [ROOT, saw, yesterday]; Buffer: []

▪ Step 7:

– Stack: [ROOT, saw]; Buffer: []

– New Dependency: saw -> yesterday, npadvmod

– Action: RIGHT-ARC

Dependency parsing Gap Degree Neural Dependency

▪ From Step 7:

– Stack: [ROOT, saw]; Buffer: []

▪ Step 8:

– Stack: [ROOT]; Buffer: []

– New Dependency: ROOT -> saw, root

– Action: RIGHT-ARC

Dependency parsing Gap Degree Neural Dependency

▪ We’ve figured out all the parsing steps!

▪ Similar exercise in the assignment.

▪ How to do this algorithmically? What are the conditions?

Dependency parsing Gap Degree Neural Dependency

▪ The gap degree of a word in a dependency tree is the least k for which the
subsequence consisting of the word and its descendants (both direct and indirect)
is entirely comprised of k + 1 maximally contiguous substrings.

▪ The gap degree of a word is the number of gaps in the subsequence formed by the
word and all its descendants, regardless of the size of the gaps.

▪ The gap degree of a dependency tree is the greatest gap degree of any word in
the tree.

Gap Degree Example

Dependency parsing Gap Degree Neural Dependency

▪ For each word, check the substring consisting itself and all its descendants:

– ROOT: ROOT John saw dogs yesterday

– John: John

– saw: John saw dogs yesterday

– dogs: dogs

– yesterday: yesterday

Dependency parsing Gap Degree Neural Dependency

All substrings are
contiguous

k=0

Dependency parsing Gap Degree Neural Dependency

Marco Kuhlmann and Joakim Nivre. 2006. Mildly Non-Projective Dependency Structures. In Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 507–514, Sydney, Australia. Association for Computational Linguistics.

Gap degree = 0 Gap degree = 1 Gap degree = 2

https://aclanthology.org/P06-2066

▪ Now assume we don’t have the dependency tree.

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

▪ Now assume we don’t have the dependency tree.

▪ When do we need to make decisions when parsing?

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

▪ Suppose we have the following partial parse:

– Stack: [ROOT, John, saw]; Buffer: [dogs, yesterday]

▪ Now we need to decide which transition to do next:

a) SHIFT: Shift dogs onto the stack

b) LEFT-ARC: create the arc: saw -> john

c) RIGHT-ARC: create the arc john -> saw

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

▪ Use a neural network to make a prediction at each parse step.

▪ Implement this in PyTorch, read the docs and refer back to the tutorial if

you’re not familiar:

– https://pytorch.org/docs/stable/index.html

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

https://pytorch.org/docs/stable/index.html

▪ Input: Word level features (e.g. word embeddings) for each word in the

sentence.

▪ One linear (fully-connected) hidden layer.

▪ A softmax layer to obtain a probability distribution over transitions.

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

▪ Input: Word level features (e.g. word embeddings) for each word in the

sentence.

– torch.nn.Embedding(size, shape)

– torch.nn.Embedding.from_pretrained(…)

▪ Make sure you DON’T freeze the pre-trained embeddings!!

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

▪ One linear (fully-connected) hidden layer.

– hidden_layer = torch.nn.Linear(input_size, output_size)

– To apply: hidden_layer(features)

You can also checkout torch.nn.relu(…) and torch.nn.dropout(…)

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

▪ A softmax layer to obtain a probability distribution over transitions.

– torch.nn.CrossEntropyLoss / torch.nn.functional.CrossEntropy

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

▪ Suppose our neural network gives us an answer:

a) SHIFT: Shift dogs onto the stack

b) LEFT-ARC: create the arc: saw -> john

c) RIGHT-ARC: create the arc john -> saw

▪ How can we tell whether we have made the right choice?

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

▪ How can we tell whether we have made the right choice?

– Implement an “oracle” that peaks into the parsed tree and tells us the correct transition

to make.

▪ Think about the first example we did in this tutorial.

– How to make the process automatic?

– What conditions need to be met to make a particular transition?

Neural Dependency Parser

Dependency parsing Gap Degree Neural Dependency

So…
One pitfall of the transition-based parser is that it can only handle projective parse trees (you can try

to think about why this is)

Next time, we will look at graph-based dependency parsing, which accounts for non-projective trees.

	Slide 1: CSC485/2501 A1 Tutorial 2
	Slide 5: Assignment 1
	Slide 6: Assignment 1
	Slide 7: Assignment 1
	Slide 8: Part 1: Transition-based parser Tutorial overview
	Slide 9: Dependency parser
	Slide 10: Transition-based Parser
	Slide 11: SHIFT Operation
	Slide 12: LEFT-ARC Operation
	Slide 13: RIGHT-ARC Operation
	Slide 14: Dependency Parsing Example
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Gap Degree Example
	Slide 26
	Slide 27
	Slide 28: Neural Dependency Parser
	Slide 29: Neural Dependency Parser
	Slide 30: Neural Dependency Parser
	Slide 31: Neural Dependency Parser
	Slide 32: Neural Dependency Parser
	Slide 33: Neural Dependency Parser
	Slide 34: Neural Dependency Parser
	Slide 35: Neural Dependency Parser
	Slide 36: Neural Dependency Parser
	Slide 37: Neural Dependency Parser
	Slide 38: So…

