Assignment 3 Tutorial 3

e Jinyue Feng -

Overview

TRALE Basics
Grammatical Gender Agreement

Subcategorization

Passive Voice (Gap Constuct)
Semantic Head

Goals and Macros

Beta Reduction
Quantifier Storage

Don't forget to check ovt
the tutorial online!

https://www.cs.toronto.edu/~niu/csc485/trale/

Macros and Goals - Practical Aspects in Q2

e Use the macros to translate the formal logic into TRALE
o @lambda(X, F): AX.F
o @forall(X, F, G): VX.F > G
o @exists(X, F, G): IX.F A G
o @apply(F, [X, Y, Z]): F(X,Y,Z)

e Use goals to apply the proper process at given parsing step.
o Beta Reduction
m goal > beta_normalize(@apply(F, [G]), B).
m (Bis [normalized F (Q))
o Quantifier Storage
m goal > gaction(Logic, Qstore, NewlLogic, NewQstore).
o Quantifier Retrieval
m goal > retrieve(Qstore, Logic, NewQstore, NewlLogic).

Macros and Goals - Practical Aspects in Q2

e Encoding course(x): use @apply
o Inthe last tutorial, we saw goal-style definition

course(x) 1if true.
Given the definition of our helper function:
beta_normalize((app,Apply),Apply) if true.

By using statements like @Llambda (@apply (Course, [x]), we can fulfill the goal in the
exact same way without explicitly defining separate goals for each type of semantic.

Notice that Apply is a variable, not an atom.

Beta Reduction

Every student takes a course.

Q

Very

AFAPYy.(F(y)

S

Vz.(student(z) = Jy.(course(y) A take(z,y)))

/\

NP
)@Vx.(student (z) =>

P(y))

N

student ‘

Az.(student(z))

)@/\z

VP

| Az.3y.(course(y) A take(z,y)) |

/\

A%

takes

Q(A\z.(take(z,z))

S

NP
AP.3y.(course(y) A P(y))

™

Q N

—..course

)B/\P.Ely./\ P(y)) |\z.(course(z))

Quantifier Storage

Every student takes a course.

How do we go from the surface reading:

Vx. (student(x) = 3Jy.(course(y) A take(x, y)))
To:

Jy. (course(y) A Vx.(student(x) > take(x, y)))

Basic Idea of Quantifier Storage

e Similar to the idea of subcategorization, we use a list (qstore) to save

items (in this case, logic) for future processing.
o We are switching the order of processing to reach the second reading.

e A placeholder function takes the place of the stored logic and participates
in the beta normalization steps.
e When itis time to process the stored logic, we apply the stored function

into the placeholder and beta normalize the final expression.
o Note that our retrieve goal already contains the beta_normalization goal as a condition.

Quantifier storage

S
Vz.(student(z) = 3y.(course(y) A take(z,y)))

//\

Let's temporarily
store the logic here

NP VP g
APNz.(student(z) = P(z)) Az.3y.(course(y) A take(z,y)) and usea
placeholder
Q N v NP
AP.Jy.(course(y) A P(y))
ey student takes Q N
AFAPYy.(F(y) = P(y)) Az.(student(z)) AQ.A\z.Q(\z.(take(z,z)))
a course

AFAP3y.(F(y) A P(y)) Az.(course(z))

Storage and Retrieval

S (2)
LF: Vz.student(z) = take(z, 2)
QsTORE: (23 AG.3y.(course(y) A G(y)))

/'-/“\
NP VP
LF: AP.Vz.(student(z) = P(x))
QSTORE: (
every student \" NP (1)

LE: AF.F(2)
QSTORE: <z; AG.Fy.(course(y) A G(y))>

takes a course

What happens at goal> gaction?

NP: A course

Logic Qstore
before AG.3y. (course(y) A G(y)) <>
after AF.F(z) <z;AG.3y. (language (y) AG(y))>

10

What happens at goal> retrieve?

S: Every student takes a course

Logic Qstore
Before | Vx.student(x) > take(x, z) <z;AG.3y. (language(y) AG(y))>
Notice this is already beta-normalized
Step 1 Az.Vx.student(x) > take(x, z) <z;AG.3y. (language(y) AG(y))>
Step 2 (AG.3y. (course(y) A G(y))) <>
(Az.Vx.student(x) > take(x, z))
Step3 | Jy.(course(y) A <>

Vx. (student(x) > take(x, y)))

11

Questions?

12

