
Assignment 3 Tutorial 3
Jinyue Feng

Overview
● TRALE Basics
● Grammatical Gender Agreement

● Subcategorization
● Passive Voice (Gap Constuct)
● Semantic Head
● Goals and Macros

● Beta Reduction
● Quantifier Storage Don’t ƉoƯgƈƗ ƱƬ cƋeƠk ƒƲƗ

tƋe ƱƘtƬƕiƄƩ ƬnƏiƫƈ!

2

https://www.cs.toronto.edu/~niu/csc485/trale/

Macros and Goals - Practical Aspects in Q2
● Use the macros to translate the formal logic into TRALE

○ @lambda(X, F): λX.F
○ @forall(X, F, G): ∀X.F ⇒ G
○ @exists(X, F, G): ∃X.F ∧ G
○ @apply(F, [X, Y, Z]): F(X,Y,Z)

● Use goals to apply the proper process at given parsing step.
○ Beta Reduction

■ goal > beta_normalize(@apply(F, [G]), B).
■ (B is β normalized F (G))

○ Quantifier Storage
■ goal > qaction(Logic, Qstore, NewLogic, NewQstore).

○ Quantifier Retrieval
■ goal > retrieve(Qstore, Logic, NewQstore, NewLogic).

3

Macros and Goals - Practical Aspects in Q2
● Encoding course(x): use @apply

○ In the last tutorial, we saw goal-style definition

course(x) if true.

Given the definition of our helper function:

beta_normalize((app,Apply),Apply) if true.

By using statements like @lambda(@apply(Course, [x]), we can fulfill the goal in the
exact same way without explicitly defining separate goals for each type of semantic.

Notice that Apply is a variable, not an atom.

4

Beta Reduction
Every student takes a course.

5

Quantifier Storage
Every student takes a course.

How do we go from the surface reading:

∀x.(student(x) ⇒ ∃y.(course(y) ∧ take(x, y)))

To:

∃y.(course(y) ∧ ∀x.(student(x) ⇒ take(x, y)))

6

Basic Idea of Quantifier Storage
● Similar to the idea of subcategorization, we use a list (qstore) to save

items (in this case, logic) for future processing.
○ We are switching the order of processing to reach the second reading.

● A placeholder function takes the place of the stored logic and participates
in the beta normalization steps.

● When it is time to process the stored logic, we apply the stored function
into the placeholder and beta normalize the final expression.
○ Note that our retrieve goal already contains the beta_normalization goal as a condition.

7

Quantifier storage

8

Let’s temporarily
store the logic here

and use a
placeholder
λF.F(z)!

Storage and Retrieval

9

What happens at goal> qaction?
NP: A course

10

Logic Qstore

before λG.∃y.(course(y) ∧ G(y)) <>

after λF.F(z) <z;λG.∃y.(language(y)∧G(y))>

What happens at goal> retrieve?
S: Every student takes a course

11

Logic Qstore

Before ∀x.student(x) ⇒ take(x, z)
Notice this is already beta-normalized

<z;λG.∃y.(language(y)∧G(y))>

Step 1 λz.∀x.student(x) ⇒ take(x, z) <z;λG.∃y.(language(y)∧G(y))>

Step 2 (λG.∃y.(course(y) ∧ G(y)))
(λz.∀x.student(x) ⇒ take(x, z))

<>

Step 3 ∃y.(course(y) ∧
 ∀x.(student(x) ⇒ take(x, y)))

<>

Questions?

12

