SORRY, KID, OUR MACHINE
LEARNING CRM WITH
PREDICTIVE ANALYTICS SAYS

YOU' RE GETTING COALTHIS YEAR. Test Time
Scaling ||

We change the model this time.
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Agenda

* Fine-tuning
* Fine-tuning for decoder-only LMs
* Parameter-efficient fine-tuning (PEFT)
* [nstruction tuning



“Fine-tuning”

 BERT: the pretrain-finetune paradigm.

Task

Supervised specific
data from task loss

Train a new “bolt-
on” classifier

Next word

Data from fine- prediction
tuned domain objective

Train the whole

model on a new
domain

Class

.
C=0- @

BERT

- Bl =]

Senfence!  Sentence?
(a) Sentence Pair Classification Tasks:
M QP, ONLI, §

ssssssssss

5 Gl G
BERT

ETE]- EGEalE]- (=]
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(c) Question Answering Tasl
SQUAD v1.1

LLM Generation



OpenAl Platform

() Search

Web search
Code interpreter

File search and
HUEE]

More tools »

Run and scale
Conversation state
Background mode
Streaming
Webhooks

File inputs
Prompting ?

Reasoning *

Evaluation
Getting started

Workina with evals

cL K

Supervised fine-tuning

Fine-tune models with example inputs and known good
outputs for better results and efficiency.

Docs

Supervised fine-tuning (SFT) lets you train an OpenAl model with examples for

your specific use case. The result is a customized model that more reliably

produces your desired style and content.

HOW IT WORKS

Provide examples of correct
responses to prompts to guide

the model's behavior.

Often uses human-generated
"ground truth” responses to show
the model how it should

respond.

Overview

BEST FOR

Classification
MNuanced translation

Generating content
in a specific format

Correcting
instruction-
following failures

USE WITH

gpt-4.1-2025-84-14
gpt-4.1-mini-2825-64-
14
gpt-4.1-nano-2025-84-
14

APl reference

Overview

Build your dataset

Upload training data

Create a fine-tuning job

Evaluate the result
Safety checks

Next steps

Start building


https://platform.openai.com/docs/guides/supervised-fine-tuning
https://platform.openai.com/docs/guides/supervised-fine-tuning
https://platform.openai.com/docs/guides/supervised-fine-tuning
https://platform.openai.com/docs/guides/supervised-fine-tuning
https://platform.openai.com/docs/guides/supervised-fine-tuning
https://platform.openai.com/docs/guides/supervised-fine-tuning

Fine-tuning

W’ =W + AW

Updated Weights

Get AW via backprop




Towards Parameter-efficient fine-tuning (PEFT)

, . + * Why fine-tuning only some
r ’ parameters?
== e * Fine-tuning all parameters is
r 5 : impractical with large models.
! - ' e State-of-the-art models are
%E massively overparameterized
N— > Parameter-efficient
Full Fine-tuning Parameter-efficient Fine-tuning finetuning matches
Update all model Update a small subset of model performance of full fine_tuning.

parameters parameters



AW = —aVIW W =W + AW

Pretrained Weights

Updated Weights

W’




PEFT

Pretrained Weights




PEFT

Pretrained

Weights h=axW +xAW
w




Rank of a Matrix

* We can use a big matrix to represent low dimension data.

e The true dimension of a matrix is its rank.

* If a matrix M has rank r, we can decompose it into the product of
two, much smaller matrices.

If
M e R™*" rank(M) =r

Then there exist matrices:

UcR™" and U € R"™*"
such that
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LoRA: Low-Rank Adaptation

* L LM weights are low rank!

INTRINSIC DIMENSIONALITY EXPLAINS THE EFFEC-
TIVENESS OF LANGUAGE MODEL FINE-TUNING

Armen Aghajanyan, Luke Zettlemoyer, Sonal Gupta
Facebook
{armenaq,lsz,sonalgupta}@fb.com

ABSTRACT

Although pretrained language models can be fine-tuned to produce state-of-the-
art results for a very wide range of language understanding tasks, the dynamics
of this process are not well understood, especially in the low data regime. Why
can we use relatively vanilla gradient descent algorithms (e.g., without strong reg-
ularization) to tune a model with hundreds of millions of parameters on datasets
with only hundreds or thousands of labeled examples? In this paper, we argue
that analyzing fine-tuning through the lens of intrinsic dimension provides us with
empirical and theoretical intuitions to explain this remarkable phenomenon. We
empirically show that common pre-trained models have a very low intrinsic di-
mension; in other words, there exists a low dimension reparameterization that is
as effective for fine-tuning as the full parameter space. For example, by optimiz-
ing only 200 trainable parameters randomly projected back into the full space, we
can tune a RoBERTa model to achieve 90% of the full parameter performance
levels on MRPC. Furthermore, we empirically show that pre-training implicitly
minimizes intrinsic dimension and, perhaps surprisingly, larger models tend to
have lower intrinsic dimension after a fixed number of pre-training updates, at
least in part explaining their extreme effectiveness. Lastly, we connect intrinsic
dimensionality with low dimensional task representations and compression based
generalization bounds to provide intrinsic-dimension-based generalization bounds
that are independent of the full parameter count.



LoRA: Low-Rank Adaptation

* L LM weights are low rank!

INTRINSIC DIMENSIONALITY EXPLAINS THE EFFEC-
TIVENESS OF LANGUAGE MODEL FINE-TUNING

* LLM weight updates are
a lS O I.OW ra n k! ?;c‘::]::oﬁghajanyan, Luke Zettlemoyer, Sonal Gupta

{armenaq,lsz,sonalgupta}@fb.com

LORA: LOW-RANK ADAPTATION OF LARGE LAN-
GUAGE MODELS

Edward Hu* Yelong Shen” Phillip Wallis Zeyuan Allen-Zhu
Yuanzhi Li Shean Wang Lu Wang Weizhu Chen

Microsoft Corporation

{e:jwurdhu, yeshe, phwallis, zeyuana,

yua 1, swang, 1 en}@microsoft.com

yu l@andrew.c!
(Version 2)

.edu

ABSTRACT

An important paradigm of natural language processing consists of large-scale pre-
training on general domain data and adaptation to particular tasks or domains. As
we pre-train larger models, full fine-tuning, which retrains all model parameters,
becomes less feasible. Using GPT-3 175B as an example — deploying indepen-
dent instances of fine-tuned models, each with 175B parameters, is prohibitively
expensive. We propose Low-Rank Adaptation, or LoRA, which freezes the pre-
trained model weights and injects trainable rank decomposition matrices into each
layer of the Transformer architecture, greatly reducing the number of trainable pa-
rameters for downstream tasks. Compared to GPT-3 175B fine-tuned with Adam,
LoRA can reduce the number of trainable parameters by 10,000 times and the
GPU memory requirement by 3 times. LoORA performs on-par or better than fine-
tuning in model quality on ROBERTa, DeBERTa, GPT-2, and GPT-3, despite hav-
ing fewer trainable parameters, a higher training throughput, and, unlike adapters,
no additional infere e 3 npirical investigation into
ds light on the efficacy of
on of LoRA with PyTorch
d model checkpoints for ROBERTa,
b.com/microsoft/LoRA.

models and provide our implementatior
DeBERTa, and GPT-2 at https://gith

ABSTRACT

Although pretrained language models can be fine-tuned to produce state-of-the-
art results for a very wide range of language understanding tasks, the dynamics
of this process are not well understood, especially in the low data regime. Why
can we use relatively vanilla gradient descent algorithms (e.g., without strong reg-
ularization) to tune a model with hundreds of millions of parameters on datasets
with only hundreds or thousands of labeled examples? In this paper, we argue
that analyzing fine-tuning through the lens of intrinsic dimension provides us with
empirical and theoretical intuitions to explain this remarkable phenomenon. We
empirically show that common pre-trained models have a very low intrinsic di-
mension; in other words, there exists a low dimension reparameterization that is
as effective for fine-tuning as the full parameter space. For example, by optimiz-
ing only 200 trainable parameters randomly projected back into the full space, we
can tune a RoBERTa model to achieve 90% of the full parameter performance
levels on MRPC. Furthermore, we empirically show that pre-training implicitly
minimizes intrinsic dimension and, perhaps surprisingly, larger models tend to
have lower intrinsic dimension after a fixed number of pre-training updates, at
least in part explaining their extreme effectiveness. Lastly, we connect intrinsic
dimensionality with low dimensional task representations and compression based
generalization bounds to provide intrinsic-dimension-based generalization bounds
that are independent of the full parameter count.
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LoRA

Pretrained

Weights h=xW +x2AB

7%
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Pretrained

B
H_/
Weights T h=zxzW + xAB
w —M

A

Frozen!
No need to track
gradients.
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# Trainable | WikiSQL MNLI-m SAMSum
Model&Method Parameters | Acc. (%) Acc. (%)  RI/R2/RL
GPT-3 (FT) 175,255.8M | 73.8 89.5  52.0/28.0/44.5
GPT-3 (BitFit) 142M | 713 91.0  51.3/27.4/43.5
GPT-3 (PreEmbed) 30M | 63.1 88.6  48.3/24.2/40.5
GPT-3 (PreLayer) 202M | 70.1 89.5  50.8/27.3/43.5
GPT-3 (Adapter™) 7IM | 719 89.8  53.0/28.9/44.8
GPT-3 (Adapter™) 40.IM | 732 91.5  53.2/29.0/45.1
GPT-3 (LoRA) 47M | 734 91.7  53.8/29.8/45.9
GPT-3 (LoRA) 37.7M | 74.0 91.6  53.4/29.2/45.1

Table 4: Performance of different adaptation methods on GPT-3 175B. We report the logical form
validation accuracy on WikiSQL, validation accuracy on MultiNLI-matched, and Rouge-1/2/L on
SAMSum. LoRA performs better than prior approaches, including full fine-tuning. The results
on WikiSQL have a fluctuation around £0.5%, MNLI-m around £0.1%, and SAMSum around

+0.2/40.2/4-0.1 for the three metrics.

15



7.2 WHAT IS THE OPTIMAL RANK r FOR LORA?

We turn our attention to the effect of rank r on model performance. We adapt {W,, W,},
{Wy, Wi, W,,, W_}, and just W, for a comparison.

Weight Type r=1 r=2 r=4 r=8 r==064

» 1% 68.8 696 70.5 704  70.0
= q

WikiSQL(0.5%) W, W, 734 733 737 7138 735
Wy, Wi, Wo, W, | 741 737 740 740 739
W, 90.7 909 9.1 907  90.7
MultiNLI (<0.1%) W, W, 913 914 913 916 914
Wy Wi, W, W, | 912 917 917 915 914

Table 6: Validation accuracy on WikiSQL and MultiNLI with different rank r. To our surprise, a
rank as small as one suffices for adapting both W, and W, on these datasets while training 1V, alone
needs a larger 7. We conduct a similar experiment on GPT-2 in Section H.2.

16



Instruction Tuning

[ "translate English to German: That is good."

"Das ist gut."]

"cola sentence: The
course is jumping well.”

"not acceptable"]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

( A

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi.."

\ J/

"six people hospitalized after
a storm in attala county.”

17



Instruction Tuning

Instruction finetuning

Please answer the following question.

What is the boiling point of Nitrogen?
N

Chain-of-thought finetuning

Answer the following question by
reasoning step-by-step.

The cafeteria had 23 apples. If they
used 20 for lunch and bought & more,
how many apples do they have?

M

The cafeteria had 23 apples
originally. They used 20 to
make lunch. So they had 23 -
20 = 3. They bought & more
apples, sothey have 3+ 6=9.

Language
model

Inference: generalization to unseen tasks

|
Q: Can Geoffrey Hinton have a
conversation with George Washington?

Geoffrey Hinton is a British-Canadian
\ | computer scientist born in 1947. George
*| Washington died in 1799. Thus, they
could not have had a conversation
Give the rationale before answering. together. So the answer is “no”.

Chung et al. 2022. Scaling Instruction-Finetuned Language Models.



a TO-SF

Commonsense reasoning
Question generation
Closed-book QA
Adversarial QA

Extractive QA
Title/context generation
Topic classification
Struct-to-text

-

Finetuning tasks

4 Muffin

Natural language inference
Code instruction gen.

Program synthesis
Dialog context generation

Closed-book QA
Conversational QA
Code repair

69 Datasets, 27 Categories, 80 Tasks

\
é CoT (Reasoning)

Arithmetic reasoning Explanation generation

J/
N\

4 )

Natural
Instructions v2

Cause effect classification
Commonsense reasoning
Named entity recognition
Toxic language detection
Question answering
Question generation
Program execution

Text categorization

Commonsense Reasoning  Sentence composition
55 Datasets, 14 Categories, Implicit reasoning 372 Datasets, 108 Categories,
193 Tasks / l\ 9 Datasets, 1Category, 9 Tasks . \ 1554 Tasks /

<@

<@

A Dataset is an original data source (e.g. SQUAD).
A Task Category is unique task setup (e.g. the SQUAD dataset is configurable for multiple task categories such as

extractive question answering, query generation, and context generation).
% ATaskis a unique <dataset, task category> pair, with any number of templates which preserve the task category (e.g.
query generation on the SQuAD dataset.)

Held-out tasks
' N - N ™y
MMLU BBH TyDiQA MGSM
Abstract algebra Sociology Boolean expressions Navigate .
College medicine Philosophy Tracking shuffled objects ~ Word sorting Info‘r{_rnatlun Grar;de Sﬂ:aol
Professional law Dyck languages seeking QA math problems
57 tasks 27 tasks 8 languages 10 languages

Figure 2: Our finetuning data comprises 473 datasets, 146 task categories, and 1,836 total tasks. Details for 540B
the tasks used in this paper is given in Appendix F.

Params Model Norm. avg.
80M T5-Small -9.2
Flan-T5-Small -3.1 (+6.1)
250M  T5-Base -5.1
Flan-T5-Base 6.5 (+11.6)
780M T5-Large -5.0
Flan-T5-Large 13.8 (+18.8)
3B T5-XL -4.1
Flan-T5-XL 19.1 (+23.2)
11B T5-XXL -29
Flan-T5-XXL 23.7 (+26.6)
8B PalLM 6.4
Flan-PaLM 21.9 (+15.5)
62B PaLM 284
Flan-PaLM 38.8 (+10.4)
540B PaLM 49.1
Flan-PaLM 58.4 (+9.3)
62B cont-PaLM 38.1
Flan-cont-PaLM 46.7 (+8.6)
U-PalLM 50.2
Flan-U-PaLM 59.1 (+8.9)
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/—[ Model input (Disambiguation QA) ]—\ /—[ Before instruction finetuning ]‘\

Q: In the following sentences, explain the The reporter and the chef will discuss their favorite
antecedent of the pronoun (which thing the dishes.
pronoun refers to), or state that it is ambiguous. The reporter and the chef will discuss the reporter's

favorite dishes.
The reporter and the chef will discuss the chef's
favorite dishes.

Sentence: The reporter and the chef will discuss
their favorite dishes.

Options: The reporter and the chef will discuss the reporter's
(A) They will discuss the reporter's favorite dishes and the chef's favorite dishes.

(B) They will discuss the chef's favorite dishes : .

(C) Ambiguous ¢ (doesn’t answer question)

A: Let's think step by step.
N\ AN /

20



/—[ Model input (Disambiguation QA) ]—\ /—[ After instruction finetuning ]—\

Q: In the following sentences, explain the The reporter and the chef will discuss their favorite
antecedent of the pronoun (which thing the dishes does not indicate whose favorite dishes they
pronoun refers to), or state that it is ambiguous. will discuss. So, the answer is (C). €2

Sentence: The reporter and the chef will discuss
their favorite dishes.

Options:

(A) They will discuss the reporter's favorite dishes
(B) They will discuss the chef's favorite dishes
(C) Ambiguous

A: Let's think step by step.
xS, 7z N J
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See you next year. Have fun and stay safe.
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