
Question
Answering

Lecture 12

1

Announcement

• Plan for the reminder of the course
• Week 12 (today): QA + RAG
• Week 13: RAG + Agent basics
• Week 14: Review

• Homework:
• HW4 release today --- regular homework
• HW5: problem set

• Gives you a feel of the final exam
• HW6: max(HW)

Modern QA from text

• An idea originating from the IR community.
• With massive collections of full-text documents, simply finding

relevant documents is of limited use: we want answers from
textbases.

• QA: give the user a (short) answer to their question, perhaps
supported by evidence.

The common person’s view? [From a novel]
“I like the Internet. Really, I do. Any time I need a piece of shareware or I want to find out the weather in
Bogota … I’m the first guy to get the modem humming. But as a source of information, it sucks. You got
a billion pieces of data, struggling to be heard and seen and downloaded, and anything I want to know
seems to get trampled underfoot in the crowd.”

M. Marshall. The Straw Men. HarperCollins Publishers, 2002.

3

Outline

• Intro to QA
• QA & IR before deep learning
• QA & IR with deep learning (BERT, dense retrieval…)
• RAG: QA with LLM

4

Question Answering (QA)

• Question Answering (QA) usually involves a specific answer to a
question.

5

Information Retrieval (IR) and QA

One strategy is to turn QA into information retrieval (IR) and
let the human complete the task.

6

Question Answering (QA)

7

Knowledge-based QA

1. Build a structured semantic
representation of the query.
• Extract times, dates, locations, entities

using regular expressions.
• Fit to well-known templates.

2. Query databases with these
semantics.
• Ontologies (Wikipedia infoboxes).
• Restaurant review databases.
• Calendars.
• …

8

IR-based QA

9

10

11

12

IR-based QA

13

IR-based QA with LLM (RAG)

Retrieval-
augmented
generation
(RAG):
Use an LLM to
do the QA

14

Sample TREC questions

1. Who is the author of the book, "The Iron Lady:
A Biography of Margaret Thatcher"?

2. What was the monetary value of the Nobel Peace
Prize in 1989?

3. What does the Peugeot company manufacture?
4. How much did Mercury spend on advertising in 1993?
5. What is the name of the managing director of Apricot Computer?
6. Why did David Koresh ask the FBI for a word processor?
7. What debts did Qintex group leave?
8. What is the name of the rare neurological disease with symptoms

such as: involuntary movements (tics), swearing, and incoherent
vocalizations (grunts, shouts, etc.)?

15

Query types

• Different kinds of questions can be asked.
• Factoid questions, e.g.,

• How often were the peace talks in Ireland delayed or disrupted as a
result of acts of violence?

• Narrative (open-ended) questions, e.g.
• Can you tell me about contemporary interest in the Greek philosophy

of stoicism?
• Complex/hybrid questions, e.g.,

• Who was involved in the Schengen agreement to eliminate border
controls in Western Europe and what did they hope to accomplish?

16

People want to ask questions…

• Examples from AltaVista query log (late 1990s)
• who invented surf music?
• how to make stink bombs
• where are the snowdens of yesteryear?
• which english translation of the bible is used in official catholic liturgies?
• how to do clayart
• how to copy psx
• how tall is the sears tower?

• Examples from Excite query log (12/1999)
• how can i find someone in texas
• where can i find information on puritan religion?
• what are the 7 wonders of the world
• how can i eliminate stress
• What vacuum cleaner does Consumers Guide recommend

Around 10% of early query logs are QUESTIONS.
17

2011: IBM Watson beat Jeopardy champions

18

IBM Watson: Search

19

Not all problems are solved by these

• Where do lobsters like to live?
• on a Canadian airline

• Where are zebras most likely found?
• near dumps
• in the dictionary

• Why can't ostriches fly?
• Because of American economic sanctions

• What’s the population of Mexico?
• Three

• What can trigger an allergic reaction?
• ..something that can trigger an allergic reaction

20

Question answering in deep learning era

21Question Answering Tasks: SQuAD.

SQuAD: Stanford question answering dataset
• 100k annotated (passage, question, answer) triples

• Large-scale supervised datasets are also a key ingredient for training effective neural
models for reading comprehension!

• Passages are selected from English Wikipedia, usually 100~150 words.

• Questions are crowd-sourced.

• Each answer is a short segment of text (or span) in the passage.
• This is a limitation— not all the questions can be answered in this way!

• SQuAD was for years the most popular reading comprehension
dataset; it is “almost solved” today (though the underlying task is not,)
and the state-of-the-art exceeds the estimated human performance.

• SQuAD 2.0: some questions can’t be answered.

22

https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/

BERT for Reading Comprehension
• This simplified version of QA aka

Reading Comprehension.
• (Passage, Question) ⇒ Answer

23

BERT for Reading Comprehension
• This simplified version of QA aka

Reading Comprehension.
• (Passage, Question) ⇒ Answer

24

BERT for IR
• Dense passage retrieval (DPR)

• We can also just train the retriever using question-answer pairs!

• Trainable retriever (using BERT) largely outperforms traditional IR
retrieval models.

25
Karpukhin et al., (2020). Dense Passage Retrieval for Open-Domain Question Answering.

Neural Methods for IR Beyond Re-ranking

• Re-Ranking depends on a candidate selection (bottleneck)
• How to bring neural advances in this first-stage phase

• Today we look at dense retrieval as (inverted index) BM25 alternative

• Many other neural approaches to improve first-stage retrieval:
• Doc2query: Document expansion with query text that would semantically match

the document. Exists in both BERT and T5 variants. Then index the expanded
documents with BM25

• DeepCT: Assign term weights based on BERT output during indexing -> retrieval
with inverted index & BM25

• COIL: Fuses contextual vectors into an inverted index structure, for faster lookup
of semantic matches

3

Neural Re-Ranking

• Re-rankers: They change the ranking of a pre-selected list of results
• Same interface as classical ranking methods: score(q, d)

• Query workflow:

Trained
Neural IR Model

First stage ranker

All matched
document
statistics

Preprocessing BM25
Inverted

index

Ranked
documents
(Top 1000)

Re-Ranked
documents
(Top 10)

Second stage
re-ranker

Query

How to make a good cappuccino

Full text
storage

Document
content

2
7

Dense Retrieval (with Re-Ranking)

• Dense retrieval replaces the traditional first stage
• Using a neural encoder & nearest neighbor vector index

• Can be used as part of a larger pipeline

Neural Re-Ranking
Model

Closest
Documents
(Top 1000)

Re-Ranked
documents
(Top 10)

Second Stage Re-Ranker

Query

How to make a good cappuccino

Full text
storage

Nearest
Neighbor

Index

First Stage Retriever

BERT

2
8

DOT

Standalone Dense Retrieval

• If dense retrieval is effective enough for our goals:
• We can also use it as a standalone solution

• Much faster + less complexity if we remove re-ranking stage

Closest
Documents
(Top 10)

Query

How to make a good cappuccino

Nearest
Neighbor

Index

First Stage Retriever

BERT

2
9

DOT

• Neural IR models are typically trained with triples (pairwise +,-)
• Triple: 1 query, 1 relevant, 1 non-relevant document

• Generate embeddings for query, relevant doc, non-relevant doc

• Loss function: Maximize margin between rel/non-rel document

• All model components are trained end-to-end
• Of course we could decide to freeze some parts for more efficient training

30

Training

• We form a batch by sampling as many triples as is
allowed by the GPU memory
• Typical batch size: 16-128

• We mix different queries together

• Depending on the model we need to create query-
passage pairs or run each of the three sequences
individually through the model

• We run a backward pass & gradient update per
batch

• Sequency inputs come as a single matrix, so we
need to pad different length inputs

Training Batch

,

Pairwise View

, ,

Individual View

Query

31

Relevant Passage

Non-Relevant Passage

Creating Training Batches

13

• Most collections only come with judgements of relevant (or false-positive
selections from other models) and not truly non-relevant judgements
• It doesn’t make sense to spend resources annotating random pairs

• We need to tell the model what is non-relevant
• Simple procedure to sample non-relevant passages:

• Run BM25 and get the top-1000 results per training query and randomly select a few of those
results as non-relevant

• The non-relevant selections provide some signal
(as there must be at least some lexical overlap)

• But mostly non-relevant passages -> works pretty good in practice

• A bit of noise is good (we don’t know the degree of non-relevance, but that’s ok)

Sampling Non-Relevant Passages

15

• Choice of different methods that aim to maximize
the margin between rel & non-rel document
• Plain Margin Loss:

loss = max(0,snonrel − srel + 1)

• Native support in PyTorch: torch.nn.MarginRankingLoss()

• RankNet:

loss = BinaryCrossEntropy(srel − snonrel)

• Both losses assume binary relevance

Loss Function

Dense Retrieval Lifecycle

8

• 3 major phases in the dense retrieval lifecycle
• Each comes with several complex choices and required techniques

• Could skip ❶ if we use a pre-trained model

Closest
Documents
(Top X)

Query How to make a good cappuccino

Nearest
Neighbor

Index

❶ Training

Passage

❷ Indexing ❸ Searching

BERTDOT

BERTDOT

Training Batches
Collection

TrainedModel

BERTDOT

500K+ repetitions

1 Vector / passage

Nearest
Neighbor

Index

Full Index

BERTDOT Model

• Passages and queries are
compressed into a single vector
• Passages are completely independent

-> moves most computation into the
indexing phase

• Only need query encoding at runtime

• Relevance is scored with
a dot-product
• Cosine-sim variants also exist

• This allows easy use of an
(approximate) nearest neighbor index

Passage

Score

...

BERT

Query

q1 ,q2

p1,p2,… ,pn

CLS

Independent Input CLS Vector Output

BERT

CLS ...

Offline Computable & Indexable

35

BERTDOT

• Simple formula (as long as we abstract BERT):

𝐶𝐿𝑆Ƹ𝑞 =BERT 𝐶𝐿𝑆 ; 𝑞1..𝑛

Ƹ𝑝 = BERT 𝐶𝐿𝑆 ; 𝑝1..𝑚 𝐶𝐿𝑆

𝑠 = ො𝑞 ∙ Ƹ𝑝

• Optional compression of ො𝑞, Ƹ𝑝 with a single linear layer
(to reduce dimensionality)

En
co

d
in

g
M

at
ch

in
g

𝑝1..𝑚 Passage tokens

𝑞1..𝑛 Query tokens

BERT
Pre-trained BERT
model

𝑠 Output score

Independent computation

Can be done “outside” the model
(with a nearest neighbor library)

CLS

36

Special tokens

𝑥𝐶𝐿𝑆
Pool the CLS
vector

Nearest Neighbor Search

14

Closest
Documents
(Top 10)

Nearest

Neighbor

Index

• Once we have a trained DR model,
we encode every passage in our collection
• We save passages in an (approximate) nearest neighbor index

• During search we encode the query on the fly
and search for nearest neighbor vectors in the passage index

Query How to make a good cappuccino
Collection

Passage

❷ Indexing ❸ Searching

BERTDOT

BERTDOT

1 Vector / passage

Nearest

Neighbor

Index

Full Index
Q Training

TrainedModel

NN Search: GPU Brute-Force

• Retrieving the top-1K from
9 million vectors is fast
• We need to do 9M dot-products (a

very big matrix multiplication)
with 768 dim. vectors

• GPUs are made for this
• Vectors must fit in GPU memory

• 70ms latency / query
• Incredible scale when

increasing the batch size

• Using a CPU this takes ~1 sec. / q
Efficiently Teaching an Effective Dense Retriever with Balanced
Topic Aware Sampling; Hofstätter et al. SIGIR 2021
https://arxiv.org/abs/2104.06967

38

https://arxiv.org/abs/2104.06967
https://arxiv.org/abs/2104.06967

Indexing Techniques: Flat Index

Flat Index = Brute Force

• No additional processing, using raw vector embeddings

• Calculates distance for each pair, slow

• Exhaustive search, best accuracy

39Images from https://kdb.ai/learning-hub/articles/indexing-basics/

https://kdb.ai/learning-hub/articles/indexing-basics/
https://kdb.ai/learning-hub/articles/indexing-basics/
https://kdb.ai/learning-hub/articles/indexing-basics/
https://kdb.ai/learning-hub/articles/indexing-basics/
https://kdb.ai/learning-hub/articles/indexing-basics/

Indexing Techniques: Inverted File Index (IVF)

Partition the dataset into clusters

• Use clustering algorithm (e.g. k-means) to divide into k clusters

• Compute the centroids of each cluster

• For each cluster, store:

• The centroid vector

• An inverted index list of the vectors assigned to that cluster

40

Indexing Techniques: Inverted File Index (IVF)

Query time:

• Compute similarity between
query and centroids

• Select top n clusters

• Compute similarity to all vectors
of these clusters

• Large reduction of search space

• More overhead
41

Indexing Techniques: Product Quantization

Main idea: Replace original vector of floats with lower dimensional
vector of integers

42

0.3 1.2 0.1 -1 -2.1 1.5 1.1 0.3 -0.4 2.8 0.1 1.1

0.3 1.2 0.1 -1 -2.1 1.5 1.1 0.3 -0.4 2.8 0.1 1.1

17 3 22 102

High dim.
dtype = float32

Low dim.
dtype = int8

Split into m pieces

Encode subvectors

Indexing Techniques: Product Quantization

Use k-means clustering on each sub-space

43

0.3 1.2 0.1 -1 -2.1 1.5 1.1 0.3 -0.4 2.8 0.1 1.1

3 1 6 2

0

1

2

3

4

5

6

7

k-means cluster centers

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Indexing Techniques: Product Quantization

Use k-means clustering on each sub-space

44

0.3 1.2 0.1 -1 -2.1 1.5 1.1 0.3 -0.4 2.8 0.1 1.1

3 1 6 2

0

1

2

3

4

5

6

7

k-means cluster centers

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Indexing Techniques: Product Quantization

Reduces n * d (embedding space) matrix of floats to n * m integers

Additional preprocessing: Store distance from sub-vectors to centroids

Query time:

• Encode query vector in the same way

• Approximate distance from query to doc by sum of stored distance
from doc sub-vector to query cluster centroid

45

Indexing Techniques: Product Quantization

Pros:

• Much faster

• Memory efficient

Cons:

• Results are approximate

• Quality depends on split and clustering parameters

46

Indexing Techniques: Graph Indices

e.g.: HNSW (Hierarchical Navigable Small Worlds)

• Proximity graph, vectors are linked with similar “friends”

• Search starts at predefined “entry point”,
visit “friends” until no nearer
vertex is found

47

Indexing Techniques: Graph Indices

Search space is split into hierarchical layers

• Top layer has longest distances

• When at a local minimum: drop one layer
and keep searching

• Repeat until NN at lowest layer

• Needs additional pre-processing and
memory, but scales much better to
huge data sets

48

Approximate NN Search

• Brute-force search does not scale well beyond a couple of million vectors

• Fortunately, nearest neighbor search of vectors is a very common and
broadly used technique in ML
• many techniques and libraries to speed up search

• Popular library: FAISS
• Offering many algorithms (brute-force, inverted lists on clusters, HNSW, …)

• CPU and GPU supported

• Approximate search is another tradeoff between latency-effectiveness
• We add a lot of complexity to the search system,

but necessary for low-latency CPU serving

49

Production Support

• Dense retrieval is gaining more and more support in production systems
• HuggingFace model hub gives us a common format to share models

• Search engine must incorporate indexing & query encoding + provide nearest
neighbor search

• Projects include Vespa.ai & Pyserini (integrates with Lucene)
• Vespa provides deep integration of dense retrieval in common search features,

such as filtering on properties
• Important to filter during search, not after as to avoid empty result lists

• Pyserini is a project focused on reproducing as many dense retrieval models as
possible
• Including easy hybrid search options between BM25 and DR

50

Other Uses for the BERTDOT Model

18

• Semantic comparisons of all sorts:
• Sentence, passage, document similarity -> all compressed into 1 vector

• Recommendation models

• S-BERT (Sentence transformers) library provides many models &
scenarios
• Based on the HuggingFace transformer library

• Offers many scenarios and built models out of the box

• Adaptions based on dot-product similarity also allow for multi-modal
comparisons
• For example: Encoding images and text in the same vector-space

S-BERT library: https://github.com/UKPLab/sentence-transformers

https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers

Next Lecture: RAG & Agent

52

NOW, ENJOY YOUR

	Slide 1: Question Answering
	Slide 2: Announcement
	Slide 3: Modern QA from text
	Slide 4: Outline
	Slide 5: Question Answering (QA)
	Slide 6: Information Retrieval (IR) and QA
	Slide 7: Question Answering (QA)
	Slide 8: Knowledge-based QA
	Slide 9: IR-based QA
	Slide 10
	Slide 11
	Slide 12
	Slide 13: IR-based QA
	Slide 14: IR-based QA with LLM (RAG)
	Slide 15: Sample TREC questions
	Slide 16: Query types
	Slide 17: People want to ask questions…
	Slide 18: 2011: IBM Watson beat Jeopardy champions
	Slide 19: IBM Watson: Search
	Slide 20: Not all problems are solved by these
	Slide 21: Question answering in deep learning era
	Slide 22: SQuAD: Stanford question answering dataset
	Slide 23: BERT for Reading Comprehension
	Slide 24: BERT for Reading Comprehension
	Slide 25: BERT for IR
	Slide 26: Neural Methods for IR Beyond Re-ranking
	Slide 27: Neural Re-Ranking
	Slide 28: Dense Retrieval (with Re-Ranking)
	Slide 29: Standalone Dense Retrieval
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Dense Retrieval Lifecycle
	Slide 35: BERTDOT Model
	Slide 36: BERTDOT
	Slide 37: Nearest Neighbor Search
	Slide 38: NN Search: GPU Brute-Force
	Slide 39: Indexing Techniques: Flat Index
	Slide 40: Indexing Techniques: Inverted File Index (IVF)
	Slide 41: Indexing Techniques: Inverted File Index (IVF)
	Slide 42: Indexing Techniques: Product Quantization
	Slide 43: Indexing Techniques: Product Quantization
	Slide 44: Indexing Techniques: Product Quantization
	Slide 45: Indexing Techniques: Product Quantization
	Slide 46: Indexing Techniques: Product Quantization
	Slide 47: Indexing Techniques: Graph Indices
	Slide 48: Indexing Techniques: Graph Indices
	Slide 49: Approximate NN Search
	Slide 50: Production Support
	Slide 51: Other Uses for the BERTDOT Model
	Slide 52: Next Lecture: RAG & Agent

