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Neural Re-Ranking Models

• Re-rankers: They change the ranking of a pre-selected list of results
• Same interface as classical ranking methods: score(q, d)

• Query Workflow:
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Inside Neural Re-ranking Models

• Core part of re-ranking models is a matching module
• Operating on a word interaction level
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Training (same as Dense Reteival)

• Training is independent from the rest of the search engine operations
• But it could be done repeatedly to account for temporal shift in the data

• Neural IR models are typically trained with triples (pairwise +,-)
• Triple: 1 query, 1 relevant, 1 non-relevant document

• Generate embeddings for query, relevant doc, non-relevant doc

• Loss function: Maximize margin between rel/non-rel document

• All model components are trained end-to-end
• Of course we could decide to freeze some parts for more efficient training
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Re-Ranking Evaluation

• Scoring per tuple (1 query, 1 document)

• List of tuples is then sorted & evaluated with ranking metric per query 
(for example: MRR@10)
• MRR@10 = Mean Reciprocal Rank, stop to look at position 10 or first relevant

• Mismatch: You can’t really compare training loss and IR evaluation metric
• Training loss is only good for checking at the beginning if your network is not 

completely broken :) – it should go down very quick and then not change
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BERT Re-Ranking: BERTCAT

• Also know as monoBERT, vanilla BERT 
re-ranking, or simply BERT

• Concatenating the two sequences to
fit BERT’s workflow
• [CLS] query [SEP] passage

• Pool [CLS] token

• Predict the score with a single linear 
layer

• Needs to be repeated for every 
passage
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Passage Re-ranking with BERT. Rodrigo Nogueira, Kyunghyun Cho. 2019
https://arxiv.org/abs/1901.04085
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BERTCAT

• Simple formula (as long as we abstract BERT):

𝑟 = BERT 𝐶𝐿𝑆 ;𝑞1..𝑛; 𝑆𝐸𝑃 ;𝑝1..𝑚 𝐶𝐿𝑆

𝑠 = 𝑟 ∗𝑊

• We still have the choice of BERT-model
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The Impact of BERTCAT

• This model (first shown by Nogueira and Cho) jumpstarted 
the current wave of neural IR

• Works awesome out of the box
• Concatenating the two sequences to fit BERT’s workflow

• As long as you have time or enough compute it trains easily

• Major jumps in effectiveness across collections and domains
• But, of course, comes at the cost of performance and virtually no 

interpretability

• Larger BERT models roughly translate to slight effectiveness gains at high 
efficiency cost
• The problem is we need to repeat the inference by the re-ranking depth!

8



So how good is BERTCAT ?

• MSMARCO-Passage
• MRR@10 from .194 (BM25) to .385 (ALBERT-Large)

• BERT basically doubles the result quality

• MSMARCO-Document
• MRR@10 from .252 (BM25) to .384 (DistilBERT with 2K tokens)

• Similar results for TREC-DL ’19, ’20, TripClick
• Large Training Data Settings

See also the (retired) MSMARCO leaderboard: https://microsoft.github.io/msmarco/
Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation; Hofstätter et al. https://arxiv.org/abs/2010.02666
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https://microsoft.github.io/msmarco/
https://arxiv.org/abs/2010.02666


BERTCAT for Longer Documents

• BERT is capped at max. 512 input tokens (query + document)

• Simplest solution: just cap the document at 512-query length
• Works surprisingly well already (for MSMARCO-Documents)

• But might not work well in other domains, where documents are really long, 
or contain a variety of topics at different depths

• Still simple, but working on full documents: Sliding window over the 
document -> take max window score as document score
• Now, we can also make smaller sliding windows

• Might be useful to use in the UI -> highlight the most relevant passage as snippet
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Deeper Text Understanding for IR with Contextual Neural Language Modeling. Zhuyun Dai, Jamie Callan 
https://arxiv.org/abs/1905.09217

https://arxiv.org/abs/1905.09217


BERTCAT In-Efficiency
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• Evaluated on 250 docs / query 
on short MSMARCO-Passage 
(max 200 tokens)

• Basic IR-specific networks are 
fast, but moderately effective

• Transformer-based BERT is very 
effective, but very slow
• + Infrastructure cost (blocking 1

GPU for 2 seconds at a time)

Sebastian Hofstätter and Allan Hanbury. 2019.
Let’s measure runtime! Extending the IR replicability infrastructure to include performance aspects . In OSIRRC @ SIGIR.



Achieving Efficiency

• Multiple paths to reduce query latency
• Query latency is our focus today, but full lifecycle efficiency also a concern

• Lifecycle efficiency includes training, indexing and retrieval steps

❶ Reduce model size
• Smaller models run faster, duh!

• Only possible until a certain threshold after which quality reduces drastically

❷Move computation away from query-time
• Pre-compute passage representation, so they become a simple lookup

• Lightweight aggregation, that can be done at query time
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Agent
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Outline

• What are LLM agents?
• A brief history of LLM agents

• Under the context of “LLM”
• Under their classic definition

• On the future of LLM agents
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What is “Agent”
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What is “Agent”
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What is “Agent”?

• An “intelligent” system that interacts with some “environment”
• Physical environments: robot, autonomous car, …
• Digital environments: DQN for Atari, Siri, AlphaGo, …
• Humans as environments: chatbot

• Define “agent” by defining “intelligent” and “environment”
• It changes over time!
• Exercise question: how would you define “intelligent”? 
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What is an “LLM Agent”
• Level 1: Text agent

• Uses text action and observation
• Examples: ELIZA, LSTM-DQN

• Level 2: LLM agent
• Uses LLM to act
• Examples: SayCan, Language 

Planner

• Level 3: Reasoning agent
• Uses LLM to reason to act
• Examples: ReAct, AutoGPT
• The key focus of the field and this 

lecture
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ELIZA (1966): Text agent via rule design
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LSTM-DQN (2015): Text agent via RL
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The promise of LLMs: Generality and few-shot learning
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A brief history of LLM agents
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Question Answering (QA)
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Question Answering
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People came up with various 
solutions for different QA tasks. 
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Code Augmentation for Computation
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Retrieval-Augmented Generation (RAG)
• Sounds fancy, but actually very simple.
• RAG:

• Step 1: retrieve N documents using some IR algorithm.
• Step 2: write the augmented query.

• Step 3: Profit.
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Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not 
prior knowledge, answer the query.
Query: {query_str}
Answer: 

https://github.com/
run-llama/llama_index 

Prompt templates:

https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index


Distraction in RAG

• Distraction:
• When a piece of irrelevant context is provided, the model generates an 

incorrect response.

• Relevant refers to whether the correct answer is in the prompt or not.

28Yoran et al. (2024) Making Retrieval-Augmented Language Models Robust to Irrelevant Context。 



Distraction in RAG
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Yoran et al. (2024) Making Retrieval-Augmented Language Models Robust to Irrelevant Context



Solution #1: Use NLI to filter irrelevant context

• Review: NLI models
• Premise:

• If you help the needy, God will reward you.
• Hypotheses:

• Giving money to a poor man has good consequences.  Entailment
• Giving money to a poor man has no consequences.  Contradiction
• Giving money to a poor man will make you a better person. Neutral

• NLI against distraction:
• Remove context sentence if it contradicts the question.
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•If you help the needy, God will reward you.



Solution #2: Finetuning

• Fine-tune the LM with:
• Both relevant and irrelevant contexts

31

Steve Burton



Distraction in RAG: Mitigation Result
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Solution #3: Interleaving decomposition
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Retrieval-augmented generation (RAG)

• Answer knowledge-intensive questions with
• Extra corpora
• A retriever (e.g., BM25, DPR, etc.)

• What if there’s no corpora? (e.g. who’s the latest PM?)
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Tool Use
• Special tokens to invoke tool calls for

• Search engine, calculator, etc.
• Task-specific models (translation)
• APIs

• Unnatural format requires task/tool-specific 
fine-tuning

• Multiple tool calls?
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What if both knowledge and reasoning are 
needed?
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Can we have a simple, unifying solution?
We need abstraction.
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Reasoning OR acting
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ReAct is simple and intuitive to use 
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Task: XXXXX

Thought: xxx
Action: xxx

Observation: 
xxxxxxx

Thought: xxx
Action: xxx

......

ReAct supports:
• One-shot prompting
• Few-shot prompting
• Fine-tuning



A zero-shot ReAct prompt
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Synergy: acting support reasoning, reasoning guides acting.



Can we have a simple, unifying solution?
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More than QA?



Many tasks can be turned into text games

46



Acting without reasoning 
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Inner Monologue: Embodied Reasoning through Planning with Language Models 



Acting without Reasoning

48Cannot explore systematically or incorporate feedback



ReAct Enables Systematic Exploration
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ReAct is general and effective
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