
RAG
and

Reasoning
Agents

1

Based on Shunyu Yao’s slides

Neural Re-Ranking Models

• Re-rankers: They change the ranking of a pre-selected list of results
• Same interface as classical ranking methods: score(q, d)

• Query Workflow:

Trained
Neural IR Model

First stage ranker

All matched
document
statistics

Preprocessing BM25
Inverted

index

Ranked
documents
(Top 1000)

Re-Ranked
documents
(Top 10)

Second stage
re-ranker

Query

How to make a good cappuccino

Full text
storage

2

Document
content

Inside Neural Re-ranking Models

• Core part of re-ranking models is a matching module
• Operating on a word interaction level

How to make a good cappuccino Encoder

Input sequences

Matching 0.842

OutputModel

Feature
extraction

The 25 steps to make a great
cappuccino are ...

Question

Document Encoder
Feature

extraction

Feature
extraction

Relevance
Scoring

3

Training (same as Dense Reteival)

• Training is independent from the rest of the search engine operations
• But it could be done repeatedly to account for temporal shift in the data

• Neural IR models are typically trained with triples (pairwise +,-)
• Triple: 1 query, 1 relevant, 1 non-relevant document

• Generate embeddings for query, relevant doc, non-relevant doc

• Loss function: Maximize margin between rel/non-rel document

• All model components are trained end-to-end
• Of course we could decide to freeze some parts for more efficient training

4

Re-Ranking Evaluation

• Scoring per tuple (1 query, 1 document)

• List of tuples is then sorted & evaluated with ranking metric per query
(for example: MRR@10)
• MRR@10 = Mean Reciprocal Rank, stop to look at position 10 or first relevant

• Mismatch: You can’t really compare training loss and IR evaluation metric
• Training loss is only good for checking at the beginning if your network is not

completely broken :) – it should go down very quick and then not change

16

BERT Re-Ranking: BERTCAT

• Also know as monoBERT, vanilla BERT
re-ranking, or simply BERT

• Concatenating the two sequences to
fit BERT’s workflow
• [CLS] query [SEP] passage

• Pool [CLS] token

• Predict the score with a single linear
layer

• Needs to be repeated for every
passage

8

Passage Re-ranking with BERT. Rodrigo Nogueira, Kyunghyun Cho. 2019
https://arxiv.org/abs/1901.04085

Query

q1 ,q2

Passage

Score

...

p1, p2, … ,pn

SEP BERTCLS

Concatenated Input

FF

Ignoring Rest
of the Output

CLS Vector
Output

https://arxiv.org/abs/1901.04085

BERTCAT

• Simple formula (as long as we abstract BERT):

𝑟 = BERT 𝐶𝐿𝑆 ;𝑞1..𝑛; 𝑆𝐸𝑃 ;𝑝1..𝑚 𝐶𝐿𝑆

𝑠 = 𝑟 ∗𝑊

• We still have the choice of BERT-model

B
ER

T
Sc

o
ri

n
g

Passage tokens

𝑞1..𝑛

𝑝1..𝑚

Query tokens

BERT
Pre-trained BERT
model

𝑊 Linear Layer
(from 768 dims to 1)

𝑠 Output score

Concatenation

Starts uninitialized

CLS
[SEP]

7

Special tokens

𝑥𝐶𝐿𝑆
Pool the CLS
vector

The Impact of BERTCAT

• This model (first shown by Nogueira and Cho) jumpstarted
the current wave of neural IR

• Works awesome out of the box
• Concatenating the two sequences to fit BERT’s workflow

• As long as you have time or enough compute it trains easily

• Major jumps in effectiveness across collections and domains
• But, of course, comes at the cost of performance and virtually no

interpretability

• Larger BERT models roughly translate to slight effectiveness gains at high
efficiency cost
• The problem is we need to repeat the inference by the re-ranking depth!

8

So how good is BERTCAT ?

• MSMARCO-Passage
• MRR@10 from .194 (BM25) to .385 (ALBERT-Large)

• BERT basically doubles the result quality

• MSMARCO-Document
• MRR@10 from .252 (BM25) to .384 (DistilBERT with 2K tokens)

• Similar results for TREC-DL ’19, ’20, TripClick
• Large Training Data Settings

See also the (retired) MSMARCO leaderboard: https://microsoft.github.io/msmarco/
Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation; Hofstätter et al. https://arxiv.org/abs/2010.02666

9

https://microsoft.github.io/msmarco/
https://arxiv.org/abs/2010.02666

BERTCAT for Longer Documents

• BERT is capped at max. 512 input tokens (query + document)

• Simplest solution: just cap the document at 512-query length
• Works surprisingly well already (for MSMARCO-Documents)

• But might not work well in other domains, where documents are really long,
or contain a variety of topics at different depths

• Still simple, but working on full documents: Sliding window over the
document -> take max window score as document score
• Now, we can also make smaller sliding windows

• Might be useful to use in the UI -> highlight the most relevant passage as snippet

13

Deeper Text Understanding for IR with Contextual Neural Language Modeling. Zhuyun Dai, Jamie Callan
https://arxiv.org/abs/1905.09217

https://arxiv.org/abs/1905.09217

BERTCAT In-Efficiency

14

• Evaluated on 250 docs / query
on short MSMARCO-Passage
(max 200 tokens)

• Basic IR-specific networks are
fast, but moderately effective

• Transformer-based BERT is very
effective, but very slow
• + Infrastructure cost (blocking 1

GPU for 2 seconds at a time)

Sebastian Hofstätter and Allan Hanbury. 2019.
Let’s measure runtime! Extending the IR replicability infrastructure to include performance aspects . In OSIRRC @ SIGIR.

Achieving Efficiency

• Multiple paths to reduce query latency
• Query latency is our focus today, but full lifecycle efficiency also a concern

• Lifecycle efficiency includes training, indexing and retrieval steps

❶ Reduce model size
• Smaller models run faster, duh!

• Only possible until a certain threshold after which quality reduces drastically

❷Move computation away from query-time
• Pre-compute passage representation, so they become a simple lookup

• Lightweight aggregation, that can be done at query time

12

Agent

13

Outline

• What are LLM agents?
• A brief history of LLM agents

• Under the context of “LLM”
• Under their classic definition

• On the future of LLM agents

14

What is “Agent”

15

What is “Agent”

16

What is “Agent”?

• An “intelligent” system that interacts with some “environment”
• Physical environments: robot, autonomous car, …
• Digital environments: DQN for Atari, Siri, AlphaGo, …
• Humans as environments: chatbot

• Define “agent” by defining “intelligent” and “environment”
• It changes over time!
• Exercise question: how would you define “intelligent”?

17

What is an “LLM Agent”
• Level 1: Text agent

• Uses text action and observation
• Examples: ELIZA, LSTM-DQN

• Level 2: LLM agent
• Uses LLM to act
• Examples: SayCan, Language

Planner

• Level 3: Reasoning agent
• Uses LLM to reason to act
• Examples: ReAct, AutoGPT
• The key focus of the field and this

lecture

18

ELIZA (1966): Text agent via rule design

19

LSTM-DQN (2015): Text agent via RL

20

The promise of LLMs: Generality and few-shot learning

21

A brief history of LLM agents

22

Question Answering (QA)

23

Question Answering

24

People came up with various
solutions for different QA tasks.

25

Code Augmentation for Computation

26

Retrieval-Augmented Generation (RAG)
• Sounds fancy, but actually very simple.
• RAG:

• Step 1: retrieve N documents using some IR algorithm.
• Step 2: write the augmented query.

• Step 3: Profit.
27

Context information is below.

{context_str}

Given the context information and not
prior knowledge, answer the query.
Query: {query_str}
Answer:

https://github.com/
run-llama/llama_index

Prompt templates:

https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index

Distraction in RAG

• Distraction:
• When a piece of irrelevant context is provided, the model generates an

incorrect response.

• Relevant refers to whether the correct answer is in the prompt or not.

28Yoran et al. (2024) Making Retrieval-Augmented Language Models Robust to Irrelevant Context。

Distraction in RAG

29
Yoran et al. (2024) Making Retrieval-Augmented Language Models Robust to Irrelevant Context

Solution #1: Use NLI to filter irrelevant context

• Review: NLI models
• Premise:

• If you help the needy, God will reward you.
• Hypotheses:

• Giving money to a poor man has good consequences. Entailment
• Giving money to a poor man has no consequences. Contradiction
• Giving money to a poor man will make you a better person. Neutral

• NLI against distraction:
• Remove context sentence if it contradicts the question.

30

•If you help the needy, God will reward you.

Solution #2: Finetuning

• Fine-tune the LM with:
• Both relevant and irrelevant contexts

31

Steve Burton

Distraction in RAG: Mitigation Result

32

Solution #3: Interleaving decomposition

33

Retrieval-augmented generation (RAG)

• Answer knowledge-intensive questions with
• Extra corpora
• A retriever (e.g., BM25, DPR, etc.)

• What if there’s no corpora? (e.g. who’s the latest PM?)

34

Tool Use
• Special tokens to invoke tool calls for

• Search engine, calculator, etc.
• Task-specific models (translation)
• APIs

• Unnatural format requires task/tool-specific
fine-tuning

• Multiple tool calls?

35

What if both knowledge and reasoning are
needed?

36

Can we have a simple, unifying solution?
We need abstraction.

37

Reasoning OR acting

38

39

ReAct is simple and intuitive to use

40

Task: XXXXX

Thought: xxx
Action: xxx

Observation:
xxxxxxx

Thought: xxx
Action: xxx

......

ReAct supports:
• One-shot prompting
• Few-shot prompting
• Fine-tuning

A zero-shot ReAct prompt

41

42

43

Synergy: acting support reasoning, reasoning guides acting.

Can we have a simple, unifying solution?

44

45

More than QA?

Many tasks can be turned into text games

46

Acting without reasoning

47

Inner Monologue: Embodied Reasoning through Planning with Language Models

Acting without Reasoning

48Cannot explore systematically or incorporate feedback

ReAct Enables Systematic Exploration

49

ReAct is general and effective

50

51

	Slide 1: RAG and Reasoning Agents
	Slide 2: Neural Re-Ranking Models
	Slide 3: Inside Neural Re-ranking Models
	Slide 4: Training (same as Dense Reteival)
	Slide 5: Re-Ranking Evaluation
	Slide 6: BERT Re-Ranking: BERTCAT
	Slide 7: BERTCAT
	Slide 8: The Impact of BERTCAT
	Slide 9: So how good is BERTCAT ?
	Slide 10: BERTCAT for Longer Documents
	Slide 11: BERTCAT In-Efficiency
	Slide 12: Achieving Efficiency
	Slide 13: Agent
	Slide 14: Outline
	Slide 15: What is “Agent”
	Slide 16: What is “Agent”
	Slide 17: What is “Agent”?
	Slide 18: What is an “LLM Agent”
	Slide 19: ELIZA (1966): Text agent via rule design
	Slide 20: LSTM-DQN (2015): Text agent via RL
	Slide 21: The promise of LLMs: Generality and few-shot learning
	Slide 22: A brief history of LLM agents
	Slide 23: Question Answering (QA)
	Slide 24: Question Answering
	Slide 25: People came up with various solutions for different QA tasks.
	Slide 26: Code Augmentation for Computation
	Slide 27: Retrieval-Augmented Generation (RAG)
	Slide 28: Distraction in RAG
	Slide 29: Distraction in RAG
	Slide 30: Solution #1: Use NLI to filter irrelevant context
	Slide 31: Solution #2: Finetuning
	Slide 32: Distraction in RAG: Mitigation Result
	Slide 33: Solution #3: Interleaving decomposition
	Slide 34: Retrieval-augmented generation (RAG)
	Slide 35: Tool Use
	Slide 36: What if both knowledge and reasoning are needed?
	Slide 37
	Slide 38: Reasoning OR acting
	Slide 39
	Slide 40: ReAct is simple and intuitive to use
	Slide 41: A zero-shot ReAct prompt
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Many tasks can be turned into text games
	Slide 47: Acting without reasoning
	Slide 48: Acting without Reasoning
	Slide 49: ReAct Enables Systematic Exploration
	Slide 50: ReAct is general and effective
	Slide 51

