
Word Representation I: 
Information Retrieval

Lecture 3

1



Representing Data

• Earlier success in computer vision.
• Navlab 5 (Jochem et al., 1995)

• Much more intuitive to convert images into vector representations.
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Representing Data

• Numeric Data:
• E.g. credit score:

Monthly 
Income

Number Of Open 
Credit Lines And 

Loans

Number Of 
Times 90 Days 

Late

Number Real 
Estate Loans Or 

Lines
Number Of Time 60-89 

Days Past Due Not Worse
Number Of 

Dependents
9120 13 0 6 0 2
2600 4 0 0 0 1
3042 2 1 0 0 0
3300 5 0 0 0 0

63588 7 0 1 0 0
3500 3 0 1 0 1

NA 8 0 3 0 0
3500 8 0 0 0 0

Give Me Some Credit (gmsc): https://www.kaggle.com/c/GiveMeSomeCredit 3
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Representing Data

• Numeric Data:
• E.g. credit score:

• Images:
• Gray scale or RGB

MNIST dataset
Handwritten numbers 4

• Videos:
• Images on a timeline



How can we represent words 
(tokens) with vectors?
Not as straightforward, hmmm
Everything will make sense after the next lecture
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Early Success

• WSD Bag of Words
• (T1, T2, T3 …)

• Information Retrieval
• TF-IDF
• BM25
• LSA

• IR Evaluation
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Today IR – Introduction, Evaluation

Introduction
• Inverted Index

• Search & Relevance

• TF-IDF & BM25

• LSA

Evaluation
• Precision & Recall

• MRR & MAP

• nDCG

❶

❷

Based on: Lecture 1 - Foundations of IR + Lecture 3 - Relevance & Scoring
https://github.com/sebastian-hofstaetter/teaching/tree/master/introduction-to-information-retrieval/lectures7
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Information Retrieval 

• Basically, Google Search.
• Tons of documents.
• 1 Search query.
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Information Retrieval

Document

How 
Relevant?

“The ugliest German city“
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How 
Relevant?

Document Document

Document Document

“The ugliest German city“

Information Retrieval (finding the needle in the haystack)
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Notes on terminology

• Documents can be anything: a web page, word file, text file, article …
(we assume it to be text for the moment)

• A lot of details to look out for: encoding, language, hierarchy, fields, …

• Collection: A set of documents (we assume it to be static for the moment)

• Relevance: Does a document satisfy the information need of the user
and does it help complete the user’s task?
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Relevance (based on text content)

• If a word appears more often -> 
more relevant

• Solution: count the words

• If a document is longer, words will 
tend to appear more often ->
take into account the document
length

• Counting only when we have a 
query is inefficient

Document 3Document 1

Elephant

Document 2

Elephant

weight

How Relevant?

“Elephant weight“

Count(Elephant) = 1
Count(weight) = 0

Count(Elephant) = 3
Count(weight) = 2

Count(Elephant) = 0
Count(weight) = 0
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Inverted Index

• Inverted index allows to efficiently retrieve documents from large 
collections

• Inverted index stores all statistics per term (that the scoring model needs)

• Document frequency: how many documents contain the term

• Term frequency per document: how often does the term appear per document

• Document length

• Average document length

• Save statistics in a format that is accessible by a given term

• Save metadata of a document (Name, location of the full text, etc..)
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Inverted Index

• Every document gets an internal 
document id

• Term dictionary is saved as a search 
friendly data structure (more on that later)

• Term Frequencies are stored in a
“posting list” = a list of doc id, frequency
pairs

Document Ids & Metadata:

[0] = (”Wildlife”, ”location”,...)
[1] = (”Zoo Vienna” ,...)
...

D
o

cu
m

e
n

t
d

a
ta

Te
rm

d
a

ta

”elephant“ =>

”lion“ =>

”weight“ =>

...

1:5 2:1 3:5 4:5 ...

1:2 7:1 9:2 ...

4:1 6:4 ...

Document Lengths:

[0] = 231 [1] = 381 ...

DocId

15
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Creating the Inverted Index

• Simplified example pipeline

• Linguistic models are language 
dependent

• A query text and a document 
text both have to undergo the 
same steps

Tokenization
+ Case folding

Document

This is a sample 

document - full of 

infos.

this

Register metadata
(+ assign document id)

is a

sample document

full of infos

Stemming
this is a

sample document

full of info

Filter function words

sample document

full info

Removed the s

Add or update
posting list

Terms

Add to dictionary

1:2 7:1 9:2„sample“ =>

Metadata
store
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Querying the Inverted Index

• No need to read full documents

• Only operate on frequency 
numbers of potentially relevant 
documents*

• Sort documents based on 
relevance score – retrieve most 
relevant documents

* it’s not that easy because a document could be relevant without
containing the exact query terms – but for now keep it simple

“Elephant weight“

Possibly
Relevant?

Document 18192

Elephant

weight

Document 18193

Document

Inverted
index

Statistics

Scoring model

1: Doc 18192
2: Doc 21230
3: Doc 30123

Open top
document

How Relevant?
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Types of queries (including, but not limited to)

• Exact matching: match full words and concatenate multiple query
words with “or”

• Boolean queries: “and” / “or” / “not” operators between words

• Expanded queries: automatically incorporate synonyms and other
similar or relevant words into the query

• Wildcard queries, phrase queries, phonetic queries (e.g. Soundex) …
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Inverted Index: Dictionary

• Dictionary<T> maps text to T
• T is a posting list or potentially other data 

about the term depending on the index

• Wanted properties:
• Random lookup

• Fast (creation & especially lookup)

• Memory efficient (keep the complete 
dictionary in memory)

• Naturally, there are a lot of choices

Document Ids & Metadata:

[0] = ("Name" ,"location",...)
[1] = ("Other name" ,...)
...

D
oc

um
en

t
d

a
ta

Te
rm

d
at

a

„index“ =>

„example“ =>

„token“ =>

...

1:5 2:1 3:5 4:5 ...

1:2 7:1 9:2 ...

4:1 6:4 ...

Document Lengths:

[0] = 231 [1] = 381 ...

The dictionary
Posting list
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Scoring model

• Input: statistics, Output: floating point value (i.e. the score)

• Evaluated pairwise – 1 query, 1 document: 𝑠𝑐𝑜𝑟𝑒 𝑞,𝑑

• Capture the notion of relevance in a mathematical model

Today we focus on free-text queries & „ad-hoc“ document retrieval
(document content only)
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Search algorithm

float Scores={}

for each query term q

fetch posting list for q

for each pair(d, 𝑡𝑓𝑡,𝑑) in posting list

if d not in Scores do Scores[d]=0

Scores[d] += score(q, d, 𝑡𝑓𝑡,𝑑, …)

return Top K entries of Scores

We transform information back 
to a document centric view 
(from the term centric view in 
the inverted index)
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Relevance

• If a word appears more often →
more relevant

• Solution: count the words

• If a document is longer, words will 
tend to appear more often → 
take into account the document 
length

Document 3Document 1

Elephant

Document 2

Elephant

weight

How Relevant?

23

“Elephant weight“

Count(Elephant) = 1
Count(weight) = 0

Count(Elephant) = 3
Count(weight) = 2

Count(Elephant) = 0
Count(weight) = 0



Relevance limitations

• “Relevance” means relevance to the need rather than to the query
• “Query” is shorthand for an instance of information need, its initial verbalized

presentation by the user

• Relevance is assumed to be a binary attribute
• A document is either relevant to a query/need or it is not

• We need these oversimplifications to create & evaluate mathematical 
models

From: A probabilistic model of information retrieval: development and comparative experiments,
Spärck Jones et al. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.6108&rep=rep1&type=pdf

24
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Term Frequency – conceptional data view

• Bag of words: word order is not important

• First step for a retrieval model: number of occurrences counts!

• 𝑡𝑓𝑡,𝑑number of occurrences of term t in document d

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 231 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0 26

Te
rm

s

Documents



Te
rm

d
at

a

”elephant“ =>

”lion“ =>

”weight“ =>

...

1:5 2:1 3:5 4:5 ...

1:2 7:1 9:2 ...

4:1 6:4 ...

DocId Term Frequency

Term Frequency – actual data storage

• Inverted index saves only non-0 entries, not the whole matrix
• Otherwise we would waste a lot of storage capacity

• Therefore not good at random lookups into the document column
• Needs to iterate through the posting list to find the correct document

• However, for scoring models 𝑡𝑓𝑡,𝑑 with 0 can be skipped
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TF - Term Frequency

• 𝑡𝑓𝑡,𝑑= how often does term 𝑡 appear in document 𝑑

• Powerful starting point for many retrieval models

• Main point of our intuition at the beginning

• Using the raw frequency is not the best solution
• Use relative frequencies

• Dampen the values with logarithm

28



Term Frequency & Logarithm

• In long documents, a term may 
appear hundred of times.

• Retrieval experiments show that 
using the logarithm of the 
number of term occurrences is 
more effective than raw counts.

• Commonly used approach: 
apply logarithm

log(1 + 𝑡𝑓𝑡,𝑑)
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

W
ei

gh
t

tf – Term Frequency

raw count log(count+1) 29



Document Frequency

• 𝑑𝑓𝑡= in how many documents does term 𝑡 appear in

• Rare terms are more informative than frequent terms
• Recall function words (and, or, the, …)

• Consider a term in the query that is rare in the collection
• e.g., Darmstadt in a news corpora

• A document containing this term is very likely to be relevant to the 
query TU Darmstadt

→ We want a high weight for rare terms like Darmstadt.
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𝐷

𝑑𝑓𝑡

Total # of 
documents

# of Documents

𝑡 ,with 𝑡𝑓 > 0

IDF – Inverse Document Frequency

• A common way of defining the inverse document 
frequency of a term is as follows:

idf 𝑡 = 𝑙𝑜𝑔
𝐷

31

𝑑𝑓𝑡

• 𝑑𝑓𝑡 is an inverse measure of the “informativeness” of
the term

• 𝑑𝑓𝑡 ≤ |𝐷|

• Logarithm is used also for idf to “dampen” its effect.



TF-IDF

𝑇𝐹_𝐼𝐷𝐹 𝑞,𝑑 = ∑ 𝑙𝑜𝑔(1 + 𝑡𝑓𝑡,𝑑)

𝑡∈𝑇𝑑∩𝑇𝑞

𝐷∗ 𝑙𝑜𝑔( )
𝑑𝑓𝑡

For more variations: https://en.wikipedia.org/wiki/Tf-idf

∑
𝑡∈𝑇𝑑∩𝑇𝑞

Sum over all query 
terms, that are in 
the index

𝑡𝑓𝑡,𝑑

𝐷

𝑑𝑓𝑡

Term frequency

Total # of 
documents

# of Documents 
with 𝑡𝑓𝑡,𝑑 > 0

increases with the number of
occurrences within a document

increases with the rarity of 
the term in the collection

• A rare word (in the collection) appearing a lot in one
document creates a high score

• Common words are downgraded

32
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TF-IDF – Usage

• Useful not only as a standalone model in document retrieval

• Weights used as a base for many other retrieval models
• Example: Vector Space Model (VSM) works better with tf-idf weights

• Also useful as a generic word weighting mechanism for NLP
• Task agnostic importance of a word in a document in a collection

• Assign every word in a collection its tf-idf score
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34

from sklearn.feature_extraction.text import TfidfVectorizer
import torch
from torch.nn.functional import cosine_similarity as sim

if __name__ == '__main__':
  corpus = ['I did not hit her', 
       'I did not', 
       'Oh hi Mark']

  tfidf = TfidfVectorizer(stop_words='english')
  x = torch.tensor(tfidf.fit_transform(corpus).todense())
  fs = tfidf.get_feature_names_out()
  print(fs)
  print(x)

  print(corpus[0], corpus[1], sim(x[0], x[1], dim=0), sep='\t')
  print(corpus[0], corpus[2], sim(x[0], x[2], dim=0), sep='\t')
  print(corpus[1], corpus[2], sim(x[1], x[2], dim=0), sep='\t')

  print(fs[0], fs[2], sim(x[:,0], x[:,2], dim=0), sep='\t')
  print(fs[1], fs[2], sim(x[:,1], x[:,2], dim=0), sep='\t')

Example
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['did' 'hi' 'hit' 'mark' 'oh']
[[0.60534851 0.         0.79596054 0.         0.        ]
 [1.         0.         0.         0.         0.        ]
 [0.         0.57735027 0.         0.57735027 0.57735027]]
I did not hit her I did not 0.6053485081062917
I did not hit her Oh hi Mark 0.0
I did not Oh hi Mark 0.0
did hit 0.5178561161676976
hi hit 0.0

Result
  corpus = ['I did not hit her', 
       'I did not', 
       'Oh hi Mark']
  tfidf = TfidfVectorizer(stop_words='english')
  x = torch.tensor(tfidf.fit_transform(corpus).todense())
  fs = tfidf.get_feature_names_out()
  print(fs)
  print(x)
  print(corpus[0], corpus[1], sim(x[0], x[1], dim=0), sep='\t')
  print(corpus[0], corpus[2], sim(x[0], x[2], dim=0), sep='\t')
  print(corpus[1], corpus[2], sim(x[1], x[2], dim=0), sep='\t')
  print(fs[0], fs[2], sim(x[:,0], x[:,2], dim=0), sep='\t')
  print(fs[1], fs[2], sim(x[:,1], x[:,2], dim=0), sep='\t')



BM25

Original paper: http://www.staff.city.ac.uk/~sb317/papers/robertson_walker_sigir94.pdf

TF-IDF vs BM25 in Lucene https://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation/

• Created 1994 by Robertson et al.

• Grounded in probabilistic retrieval

• In general, BM25 improves on TF-IDF results

• But only set as a default scoring in Lucene in 2015

36
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BM25 (as defined by Robertson et al. 2009)

𝐵𝑀25 𝑞,𝑑 =  ∑
𝑡𝑓𝑡,𝑑

𝑡∈𝑇𝑑∩𝑇𝑞 𝑘1( 1 − 𝑏
𝑑𝑙𝑑+ 𝑏 𝑎𝑣𝑔𝑑𝑙) + 𝑡𝑓𝑡,𝑑

∗ 𝑙𝑜𝑔
𝐷 − 𝑑𝑓𝑡 + 0.5

𝑑𝑓𝑡 + 0.5

• Simpler than the original formula
• Over time it was shown that more complex parts not needed

Details (a lot of them): The Probabilistic Relevance Framework: BM25 and Beyond
http://www.staff.city.ac.uk/~sb317/papers/foundations_bm25_review.pdf

∑

𝑡∈𝑇𝑑∩𝑇𝑞

Sum over all query 
terms, that are in 
the index

𝑡𝑓𝑡,𝑑

𝑑𝑙𝑑

𝑎𝑣𝑔𝑑𝑙

𝐷

𝑑𝑓𝑡

𝑘1 , 𝑏

Term frequency

Document length

Average document 
length in index

Total # of 
documents

# of Documents

𝑡 ,with 𝑡𝑓 > 0

Hyperparameters
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BM25 vs. TF-IDF

• Simple case of BM25 looks a lot like TF-IDF

• 1 main difference: BM25 𝑡𝑓 component contains saturation function
• Therefore works better in practice

• BM25 variants can be adapted to:
• Incorporate additional reference information

• Long(er) queries

• multiple fields

38



BM25 vs. TF-IDF - Saturation

• TF-IDF: weight is always 
increasing (even with log)

• BM25: diminishing returns 
quickly = asymptotically 
approaches 𝑘1 + 1

Note: we added (𝑘1+1) to the numerator to make 
tf@1 = 1, but it does not change the ranking 
because it is added to every term

Note: we assume the doc length = avgdl
1.0

2.0

3.0

4.0

5.0

6.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tf - Term Frequency

W
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log(1+tf) (k1+1)*tf / (k1 + tf) ; k1 = 1,2 39



BM25 vs. TF-IDF - Example

• Suppose your query is “machine learning”

• Suppose you have 2 documents with term counts:
• doc1: learning 1024; machine 1

• doc2: learning 16; machine 8

• TF-IDF: log(tf) * log(|D|/df)

• doc1: 11 * 7 + 1 * 10 = 87

• doc2: 5 * 7 + 4 * 10 = 75

Example taken from: https://web.stanford.edu/class/cs276/

• BM25: k1 = 2

• doc1: 3 * 7 + 1 * 10 = 31

• doc2: 2.67* 7 + 2.4 * 10 = 42.7

40
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Hyperparameters

• 𝑘1, 𝑏 are hyperparameters = they are set by us, the developers

• 𝑘1 controls term frequency scaling
• 𝑘1 = 0 is binary model; 𝑘1 large is raw term frequency

• 𝑏 controls document length normalization
• 𝑏 = 0 is no length normalization; 𝑏 = 1 is relative frequency (fully scale by 

document length)

• Common ranges: 0.5 < 𝑏 < 0.8 and 1.2 < 𝑘1 < 2

41



Summary: Part 1

❶ We save statistics about terms in an inverted index

❷ The statistics in the index can be access by a given term (query)

❸ TF-IDF & BM25 use term and document frequencies to score a query & doc

42
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Latent Semantic Analysis (LSA)

• TF-IDF is actually pretty stupid:
• Car vs cars → lemmatisation, wordnet…
• Car vs automobile → different tokens!
• No generalisation

• TF-IDF is very sparse:
• We need to keep track of an M x N matrix of token frequencies

• M: documents, N: vocab size
• Say 10,000 words, 10,000 documents: 100M values
• BERT & GPT2: 410M parameters
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Latent Semantic Analysis (LSA)

• Basic idea: use singular value decomposition (SVD) to 
encourage generalization.

LSA: Count!
• Factorize a (maybe weighted, maybe log scaled) term-document 

or word-context matrix (Schütze 1992) into UΣVT

• Singular value decomposition (SVD)

• Retain only k singular values, in order to generalize.
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Latent Semantic Analysis (LSA)

• Step 1: Build a Term–Document Matrix

• Step 2: Apply Singular Value Decomposition (SVD)
• U: word embeddings
• V: document embeddings
• Σ: diagonal matrix of singular values

(importance of each latent dimension)
46

Doc 1 Doc 2 Doc 3

cat 2 0 1

dog 1 3 0

apple 0 0 2



Latent Semantic Analysis (LSA)
• Step 3: Reduce Dimensionality

• Keep only the top k singular values and columns of U and V:

• This low-rank approximation smooths noise and reveals latent 
semantic dimensions.
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Latent Semantic Analysis (LSA)
• Corpus (3 semantic clusters):

•   Doc  0 (ML): 'machine learning with neural networks'
•   Doc  1 (ML): 'deep learning requires lots of data'
•   Doc  2 (ML): 'machine learning algorithms train on data'
•   Doc  3 (Sports): 'football players run on the field'
•   Doc  4 (Sports): 'teams of football score many points'
•   Doc  5 (Sports): 'teams need a football manager on the pitch'
•   Doc  6 (Tech): 'computers process information quickly'
•   Doc  7 (Tech): 'programming languages create software'
•   Doc  8 (Tech): 'databases store structured data’

• Building TF-IDF Matrix
• Term (Vocab) size: 31
• TF-IDF matrix shape: (9, 31) 

• (No. of docs, No. of term dimensions)

• LSA matrix shape: (9, 2) 
• (No. of docs, No. of latent dimensions)
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Evaluation

• We evaluate systems to observe concrete evidence for a hypothesis
• Is our system better than the other one?

• IR systems are hard to evaluate
• Ambiguity – what is relevant? In which context? Humans differ a lot …

• Collection size – explosion of query-document pairs

• Different types of result quality evaluation:
• Intrinsic: Fixed set: same collection, query set & labels

• Extrinsic: Observe behavior of users (in production system)*

* Could also be a user study, beta version, etc…
50



The World of Evaluation

• Today we focus on evaluating the result quality of our own IR system
• Does a document contain the answer for our query?

• Many other possibilities:
• Efficiency

• How fast can we index, return results for a query, how large becomes our index on disk?

• Fairness, diversity, content quality, source credibility, effort, …

• Retrieval in the context of a larger goal
• How many products, services do we sell through search

• How well does our website integrate with Google, Bing, etc.. (SEO)
• Optimizing a Blackbox
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Extrinsic Evaluation Setup

• Quality of systems, that produce ranked list of documents

• Compared by a pool of judgements (does not necessarily cover the whole list)

• Missing judgements are often considered as non-relevant

Ranked Retrieval Results

Half-sour

...

Known Judgements

Half-sour

Relevant

Not Relevant

Map known 
documents
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Comparing Systems

• We have multiple IR systems running 
on the same documents & same query

• How to compare them? Evaluation metrics to the rescue!

System A

Half-sour

...

Half-sour

...

System B

Half-sour

...

System C
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Today IR – Introduction, Evaluation

Introduction
• Inverted Index

• Search & Relevance

• TF-IDF & BM25

Evaluation
• Precision & Recall

• MRR & MAP

• nDCG

❶

❷
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Precision & Recall

From: Wikipedia https://en.wikipedia.org/wiki/Precision_and_recall 55
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Precision/recall tradeoff

• You can increase recall (R) by returning more documents

• Recall is a non-decreasing function of the number of documents retrieved

• A system that returns all docs has 100% recall!

• The converse is also true: It’s easy to get high precision (P) for very low recall

• Combined measure F-score:  

• allows us to trade off precision against recall

• Mostly used measure: F1 or the harmonic mean of P and R

𝐹1 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
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Example for precision, recall, F1

Relevant Non-relevant

Retrieved 20 40 60

Not retrieved 60 1,000,000 1,000,060

80 1,000,040 1,000,120

𝑃 =
20

(20 +  40)
 =

1

3

𝑅 =
20

(20 + 60)
=

1

4

𝐹1 =  2 ×

1
3

×
1
4

1
3

+
1
4

=
2

7

Relevant Non-relevant

Retrieved TP FP

Not retrieved FN TN

𝑃 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃

𝑅 =
𝑇𝑃

(𝑇𝑃 +  𝐹𝑁) 

𝐹1 = 2 ×
𝑃 × 𝑅

𝑃 + 𝑅
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Today IR – Introduction, Evaluation

Introduction
• Inverted Index

• Search & Relevance

• TF-IDF & BM25

Evaluation
• Precision & Recall

• MRR & MAP

• nDCG

❶

❷

58



Ranking List Evaluation Metrics

• Binary labels
• MRR: Mean Reciprocal Rank

• MAP: Mean Average Precision

• Graded labels
• nDCG: normalized Discounted Cumulative Gain

• Typically we measure at a cutoff @k of the top retrieved documents
• MAP, Recall: @100, @1000

• Precision, MRR, nDCG: @5, @10, @20

Some nice explanations: https://medium.com/swlh/rank-aware-recsys-evaluation-metrics-5191bba16832
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MRR: Mean Reciprocal Rank

Users look at results from the top; gets annoyed pretty fast; stops once 
they found the first relevant; doesn’t care about the rest

𝑀𝑅𝑅 𝑄
1 1

=
|𝑄|

∗ ∑
𝐹𝑖𝑟𝑠𝑡𝑅𝑎𝑛𝑘(𝑞)

𝑞∈𝑄

𝑄

Query Set

|𝑄|

Number of Queries

𝐹𝑖𝑟𝑠𝑡𝑅𝑎𝑛𝑘(𝑞)

Returns the Rank of the first relevant document for 1 query

• MRR puts the focus on the first
relevant document

• Applicable with sparse judgements or
assuming users are satisfied with one
relevant document

Reciprocal Rank

Mean over all queries
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MRR: The Reciprocal Rank

• Reciprocal Rank: 1

𝑥

• Very strongly emphasis the first position

* x is plotted continuously, but in MRR x is discrete with the position in step size of 1 61



MRR: An Example

Half-sour

System A

RR = 1

... ...

Half-sour

System B

RR = 1/3

...

Half-sour

System C

RR = 1/2

• Example for Reciprocal Rank:

62



MAP: Mean Average Precision

• MAP squeezes complex evaluation 
into a single number

• Hard to interpret

• MAP corresponds to the area under 
the Precision-Recall curve

Users look at results closely, every time they find a new relevant 
document, they look at the full picture of what has been before

𝑀𝐴𝑃 𝑄 =
1

|𝑄|
∗෍𝑖=1

σ𝑘 𝑃 𝑞 @𝑖 ∗ 𝑟𝑒𝑙 𝑞

|𝑟𝑒𝑙(𝑞)|

𝑄

Query Set

|𝑄|

Number of Queries

𝑃 𝑞 @

Precision of query q 
after first i documents

𝑟𝑒𝑙 𝑞

Binary Relevance of 
doc at position i

|𝑟𝑒𝑙(𝑞)|

Number of relevant 
documents

Average Precision

Mean over all queries Precision per 
relevant doc

∑

𝑞∈𝑄
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MAP: Mean Average Precision

1+
2

2
AP = 3 =0.83

2
AP= 3 = 0.16

+

2
AP= 2 3 =0.58

System A

Half-sour

...

Half-sour

...

System B

1

Half-sour

...

System C

1 2

• Example for Average Precision (2 relevant docs)
• Mean is then calculated for multiple queries, for each system

P=1

P=2/3 P=1/3

P=1/2

P=2/3
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Today IR – Introduction, Evaluation

Introduction
• Inverted Index

• Search & Relevance

• TF-IDF & BM25

Evaluation
• Precision & Recall

• MRR & MAP

• nDCG

❶

❷
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Graded Relevance

• Previous metrics all use binary relevance labels
• Simple enough or too simple?

• Major problem: Of course there can be a difference in importance of 
relevance
• Binary labels can not distinguish

• Graded relevance allows to assign different values of relevance
• Can be floating point or fixed set of classes for manual annotation

• Fixed set of classes for manual annotation

• Floating point can be used when relevance inferred from logs
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Common Graded TREC Relevance Labels

[3] Perfectly relevant: Document is dedicated to the query, it is worthy
of being a top result in a search engine.

[2] Highly relevant: The content of this document provides substantial 
information on the query.

[1] Relevant: Document provides some information relevant to the 
query, which may be minimal.

[0] Irrelevant: Document does not provide any useful information 
about the query
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nDCG: normalized Discounted Cumulative Gain

maximum per query

• Relevance is graded

• nDCG@10 most commonly used in 
modern offline web search
evaluation

Users take for each document the relevance grade and position into 
account, normalize by best possible ranking per query

• nDCG compares actual results with

𝐷𝐶𝐺 𝑞 =  ∑

𝑑∈𝐷, 𝑖=1

𝑟𝑒𝑙(𝑑)

𝑙𝑜𝑔2(𝑖 + 1)

𝑛𝐷𝐶𝐺 𝑄 =
1

|𝑄| ∗ 
∑

𝑞∈𝑄

𝐷𝐶𝐺(𝑞)

𝐷𝐶𝐺(𝑠𝑜𝑟𝑡𝑒𝑑(𝑟𝑒𝑙 𝑞 )

𝑄

Query Set

|𝑄|

# of Queries

𝑟𝑒𝑙(𝑑)

Relevance grade for 
single query-doc pair

𝑟𝑒𝑙(𝑞)

List of all relevance 
grades for a query

𝑠𝑜𝑟𝑡𝑒𝑑()

Return graded documents by 
descending relevance

𝐷

Single Doc. 
Result list 68



𝐷𝐶𝐺 𝑞 =  ∑

nDCG: A Closer Look

𝑙𝑜𝑔2(𝑖 + 1)
𝑑∈𝐷, 𝑖=1

𝑟𝑒𝑙(𝑑)

𝑛𝐷𝐶𝐺 𝑄 =
1

|𝑄| ∗
∑

𝑞∈𝑄

𝐷𝐶𝐺(𝑞)

𝐷𝐶𝐺(𝑠𝑜𝑟𝑡𝑒𝑑(𝑟𝑒𝑙 𝑞 )

𝑄

Query Set # of Queries

𝑟𝑒𝑙(𝑑)

Relevance grade for 
single query-doc pair

𝑟𝑒𝑙(𝑞)

List of all relevance 
grades for a query

𝑠𝑜𝑟𝑡𝑒𝑑()

Return graded documents by 
descending relevance

Single Doc. 
Result list

Mean over all queries

|𝑄| 𝐷

Actual Results

Discounted cumulative gain

Best possible sorting 
(ground truth)

Gain (relevance value, commonly 0 -> 3)

Position Discounting
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nDCG: Position Discounting

• Comparing the document position discount with reciprocal rank
• Only for binary case rel=1

• nDCG discounts less than MRR

70



nDCG: Example

nDCG=
1+1.5

3.63
= 0.69 nDCG=

0.5

3.63
= 0.14 nDCG=

1.9+0.5

3.63
= 0.66

System A

Half-sour

...

Half-sour

...

System B

Half-sour

...

System C

• Assuming two differently relevant docs (rel = 3 & 1)

• Ideal DCG =
3 1

𝑙𝑜𝑔2 1+1 𝑙𝑜𝑔2 2+1
+ = 3.63

❸

❶❸ ❶

1

❶ 𝑙𝑜𝑔2 1 + 1

3

𝑙𝑜𝑔2 3 + 1

1

𝑙𝑜𝑔2 3 + 1

3

𝑙𝑜𝑔2 2 + 1

1

𝑙𝑜𝑔2 3 + 1

71

Half-sour
...

Ideal System

❸

❶

𝑙𝑜𝑔2 1 + 1

1

𝑙𝑜𝑔2 2 + 1

3



Summary: Part 2

❶ We compare systems with a set of query and document relevance labels

❷ Binary metrics (MRR & MAP) are a solid foundation for evaluation

❸ Graded relevance allows for more fine-grained metrics (nDCG)
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