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Representing Data

* Earlier success in computer vision.
* Navlab 5 (Jochem et al., 1995)

* Much more intuitive to convert images into vector representations.



Representing Data

* Numeric Data:
* E.g. credit score:

Give Me Some Credit (gmsc): https://www.kaggle.com/c/GiveMeSomeCredit 3



https://www.kaggle.com/c/GiveMeSomeCredit

Representing Data

* Numeric Data: * Videos:
° E.g. Credit score: ¢ |mageS on a timeline
* Images:

 Gray scale or RGB

MNIST dataset
Handwritten numbers 4



How can we represent words
(tokens) with vectors?

Not as straightforward, hmmm
Everything will make sense after the next lecture



Early Success

* WSD Bag of Words * Information Retrieval

* (Ty, Ty, Ty ...) * TF-IDF
e BM25

e LSA
IR Evaluation

» Cosine similarity measures the cosine of
the angle between two vectors.

* Inner product normalized by the vector
lengths. ,
el Z::(sz’Wiq)

d||q | \/Z Wy 2 Wiy
i=1 i=1

CosSim(((j. Q=

D, = 2T, + 3T, + 5T; CosSim(D, , Q) = 10 / N(4+9+25)(0+0+4) = 0.81
D, =3T,+ 7T, + IT; CosSim(D, , Q) = 2/ N(9+49+1)(0+0+4) = 0.13

D, 1s 6 times better than /), using cosine similarity but only 5 times better using
inner product.



IR — Introduction, Evaluation

€@ Introduction

* Inverted Index

e Search & Relevance
 TF-IDF & BM25

e LSA

@ Evaluation

* Precision & Recall
* MRR & MAP
* nDCG

Based on: Lecture 1 - Foundations of IR + Lecture 3 - Relevance & Scoring
https://agithub.com/sebastian-hofstaetter/teaching/tree/master/introduction-to-information-retrieval/lectures
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C@ what is the ugliest city in germany X & @ Q

Information Retrieval ,

& Reddit - r/UrbanHell
\Q// 10+ comments - 1 year ago

The ugliest city in germany, Ludwigshafen : r/UrbanHell

It is exactly that, just that its propably the most industrial industrial town in all of germany (apart
from Wolfsburg, of course), so by definition, it's also ...

* Basically, Google Search.

e Tons of documents.

Uglies cities in Germany? 79 posts 14 Aug 2016
Is Bochum the ugliest city in Germany? 73 posts 25 Feb 2025

* 1 Search query.

More results from www.reddit.com

& Daily Express

https://www.express.co.uk > News > World

Germany's 'ugliest city' so hideous tourists can join 'ugly ...

3 Jan 2025 — In fact, Ludwigshafen has become known as Germany's ugliest city - a fact that its
citizens have now embraced.

Instagram - drewportnoyhaha
990+ likes - 12 months ago

Ludwigshafen really IS Germany's ugliest City! Thanks for the ...

22 Ludwigshafen really IS Germany's ugliest City! Thanks for the tour
»
> @97212_ ! #ludwigshafen #germanculture #germanarchitectute # ...
» £
2:1 |




Information Retrieval

Document

(o

”The ugliest Germancity @ --------- >

How
Relevant? —




| nfOrmatiOn Retrieva‘ (finding the needle in the haystack)

“ . Lu
The ugliest German city

How
Relevant?

Document

Document

Document

Document

10



Notes on terminology

* Documents can be anything: a web page, word file, text file, article ...
(we assume it to be text for the moment)

* A lot of details to look out for: encoding, language, hierarchy, fields, ...

* Collection: A set of documents (we assume it to be static for the moment)

* Relevance: Does a document satisfy the information need of the user
and does it help complete the user’s task?

11



Relevance (based on text content)

-

i

“ . “
Elephant weight

How Relevant?

-
-
-
-
-
-
-
-
-

|

|

|

|
7

* If a word appears more often ->
more relevant

e Solution: count the words

ey * If a document is longer, words will

Document 1

Elephant e

Document 2

Elephant e

aa— We]ght

Count(Elephant) =1
Count(weight) =0

Document 3

tend to appear more often ->
take into account the document

length

Count(Elephant) =3
Count(weight) =2

* Counting only when we have a
guery is inefficient

Count(Elephant) =0
Count(weight) =0

12



IR — Introduction, Evaluation

€@ Introduction

* Inverted Index

e Search & Relevance
* TF-IDF & BM25

e LSA

@ Evaluation

* Precision & Recall
* MRR & MAP
* nDCG

13



Inverted Index

* Inverted index allows to efficiently retrieve documents from large
collections

* Inverted index stores all statistics per term (that the scoring model needs)
* Document frequency: how many documents contain the term
* Term frequency per document: how often does the term appear per document
* Document length
* Average document length

 Save statistics in a format that is accessible by a given term
e Save metadata of a document (Name, location of the full text, etc..)



Inverted Index

Document data

Term data

— * Every document gets an internal

Document Ids & Metadata: .
o document id

[1]

(”Wildlife”, ”location”,...)
(”Zoo Vienna” ,...)

Document Lengths:

* Term dictionary is saved as a search

[6] = 231 [1] = 381 ...

friendly data structure (more on that later)

__:elephant“ => [1:5 [ 22 [ 35 | 45 | ..
“lion®=>  [12]71]092 [ . ] * Term Frequencies are stored in a
Pweight* => [4d [ 64 ] - | “posting list” = a list of doc id, frequency
7N -
| Docld Term Frequency pa I rs

15



Creating the Inverted Index

Thisisasample
document - full of
infos.

»Sample®

Tokenization n H

+ Case folding

--------- :
o

=> [12 [71 ] 92 |

e Simplified example pipeline

* Linguistic models are language
dependent

* A query text and a document
text both have to undergo the
same steps

16



IR — Introduction, Evaluation

€@ Introduction

* Inverted Index

* Search & Relevance
 TF-IDF & BM25

e LSA

@ Evaluation

* Precision & Recall
* MRR & MAP
* nDCG

17



Querying the Inverted Index

* No need to read full documents

Inverted

Possibly

relevantz - - [ * Only operate on frequency
“clephant weight” =~ - numbers of potentially relevant
' —— documents™®

1
v

O
Scoring model /,’I — Weight
// . ]
rd
7

onteeenT L opentop * Sort documents based on
S Dec 2173 relevance score — retrieve most
3: Doc30123

relevant documents

* it’s not that easy because a document could be relevant without
containing the exact query terms — but for now keep it simple

18



TypeS Of queries (including, but not limited to)

* Exact matching: match full words and concatenate multiple query
words with “or”

* Boolean queries: “and” / “or” / “not” operators between words

* Expanded queries: automatically incorporate synonyms and other
similar or relevant words into the query

* Wildcard queries, phrase queries, phonetic queries (e.g. Soundex) ...



Inverted Index: Dictionary

Document data

Term data

Document Ids & Metadata:

[0]
[1]

("Name" ,"location",...)
("Other name" ,...)

Document Lengths:

[0] = 231 [1] = 381 ...

TG SGEN 1.5 [ 2:1 | 3:5 [ 45 | ..

MICIICHEEN | 1:2 | 7:1 | 92 | ... |

RACUREEN | 4:1 | 6:4 | ... |

\ Posting list

The dictionary

* Dictionary<T> mapstextto T

e Tis a posting list or potentially other data

about the term depending on the index

* Wanted properties:
 Random lookup
* Fast (creation & especially lookup)

 Memory efficient (keep the complete
dictionary in memory)

* Naturally, there are a lot of choices

20



Scoring model

* Input: statistics, Output: floating point value (i.e. the score)

* Evaluated pairwise — 1 query, 1 document: score (g, d)

e Capture the notion of relevance in a mathematical model

Today we focus on free-text queries & ,,ad-hoc” document retrieval

(document content only)

21



Search algorithm

float Scores={}

for each query term g
fetch posting list for g
for each pair(d, tf;4) in posting list
if d not in Scores do Scores[d]=0
Scores[d] +=score(q, d, tft 4, -..)

return Top K entries of Scores

We transform information back
to a document centric view
(from the term centric view in
the inverted index)

22



Relevance

-

i

-

-

-

«“ . «“
Elephant weight

How Relevant?

-
-
-
-
-
-

|

|

|

|
N7

Document 1

Elephant e

Count(Elephant) =1
Count(weight) =0

Document 2

Elephant e

aa— We]ght

Document 3

Count(Elephant) =3
Count(weight) =2

Count(Elephant) =0
Count(weight) =0

* If a word appears more often -
more relevant

e Solution: count the words

* If a document is longer, words will
tend to appear more often -

take into account the document
length

23



Relevance limitations

» “Relevance” means relevance to the need rather than to the query

* “Query” is shorthand for an instance of information need, its initial verbalized
presentation by the user

* Relevance is assumed to be a binary attribute
* A document is either relevant to a query/need or it is not

* We need these oversimplifications to create & evaluate mathematical
models

From: A probabilistic model of information retrieval: development and comparative experiments,
Sparck Jones et al. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134.6108& rep=rep1&type=pdf

24
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IR — Introduction, Evaluation

€@ Introduction

* Inverted Index

e Search & Relevance
* TF-IDF & BM25

e LSA

@ Evaluation

* Precision & Recall
* MRR & MAP
* nDCG
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Term Frequency — conceptional data view

* Bag of words: word order is not important
* First step for a retrieval model: number of occurrences counts!

* tf+gnumber of occurrences of term t in document d

Documents

Antony and Cleopatra  JuliusCaesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

" Brutus 4 157 0 1 0 0

£ Caesar 231 227 0 2 1 1
i

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0




Term Frequency — actual data storage

* Inverted index saves only non-0 entries, not the whole matrix
* Otherwise we would waste a lot of storage capacity

* Therefore not good at random lookups into the document column
* Needs to iterate through the posting list to find the correct document

* However, for scoring models tf; 4 with O can be skipped

”elephant®“ => 1:5 | 21 3:5 4:5

= »1ion® => [12 [ 71 [ 92
©

g » 3 ({3

9 weight => 4:1 | 6:4

Docld Term Frequency

27



TF - Term Frequency

* tf+ 4= how often does term t appear in document d

* Powerful starting point for many retrieval models

* Main point of our intuition at the beginning

* Using the raw frequency is not the best solution
» Use relative frequencies
 Dampen the values with logarithm



Term Frequency & Logarithm

Weight

30

28

26

24

22

20

18

16

14

12

10

o N H )] (0]

* In long documents, a term may
appear hundred of times.

* Retrieval experiments show that
using the logarithm of the
number of term occurrences is
more effective than raw counts.

e Commonly used approach:
apply logarithm

log(1+ tfta)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

tf — Term Frequency

— raw count log(count+1) 29



Document Frequency

* df:=in how many documents does term t appear in

e Rare terms are more informative than frequent terms
* Recall function words (and, or, the, ...)

e Consider a term in the query that is rare in the collection
* e.g., Darmstadt in a news corpora

* A document containing this term is very likely to be relevant to the
query TU Darmstadt

— We want a high weight for rare terms like Darmstadt.

30



IDF — Inverse Document Frequency

A common way of defining the inverse document
frequency of a term is as follows:

ldf(t) — lOg ¥ documents
ft df # of Documents
" withtf, >0
* dfis an inverse measure of the “informativeness” of
the term
*df¢< |D|

* Logarithm is used also for idf to “dampen’ its effect.



TF-IDF

) Sum over all query
l ( |D| ) T terms, that are in
TF IDF d) _ * L0 — " the index
IDF(q.d) = N 1og(1 + tfra) df:
/ \ tfrq  Term frequency
increases with the number of increases with the rarity of ID| Total # of
occurrences within a document the term in the collection documents

# of Documents

Ue with tfea> 0

* A rare word (in the collection) appearing a lot in one
document creates a high score

e Common words are downgraded

For more variations: https://en.wikipedia.org/wiki/Tf-idf

32
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TF-IDF — Usage

e Useful not only as a standalone model in document retrieval

* Weights used as a base for many other retrieval models
* Example: Vector Space Model (VSM) works better with tf-idf weights

* Also useful as a generic word weighting mechanism for NLP
» Task agnostic importance of a word in a document in a collection
* Assign every word in a collection its tf-idf score



Example

ER! | DID NAAAm

from sklearn.feature_extraction.text import TfidfVectorizer
import torch

from torch.nn.functional import cosine_similarity as sim

if  name_ == " main_ ":
corpus = ['I did not hit her',
"I did not',
'Oh hi Mark']

tfidf = TfidfVectorizer(stop _words='english')

x = torch.tensor(tfidf.fit transform(corpus).todense())
fs = tfidf.get feature names out()

print(fs)

print(x)

print(corpus[@], corpus[1l], sim(x[©], x[1], dim=@), sep="\t')
print(corpus[@], corpus[2], sim(x[@], x[2], dim=@), sep='\t")
print(corpus[1l], corpus[2], sim(x[1], x[2], dim=@), sep="\t')

print(fs[0], fs[2], sim(x[:,0], x[:,2], dim=0), sep="\t')
print(fs[1], fs[2], sim(x[:,1], x[:,2], dim=0), sep="\t')

34



Result

corpus = ['I did not hit her’,

"I did not',

'Oh hi Mark']
tfidf = TfidfVectorizer(stop_words='english")
x = torch.tensor(tfidf.fit transform(corpus).todense())
fs = tfidf.get feature names out()
print(fs)
print(x)
print(corpus[@], corpus[1l], sim(x[@], x[1], dim=@), sep='\t")
print(corpus[@], corpus[2], sim(x[@], x[2], dim=0), sep='\t"')
print(corpus[1l], corpus[2], sim(x[1], x[2], dim=@), sep='\t')
print(fs[0], fs[2], sim(x[:,0], x[:,2], dim=0), sep="'\t')
print(fs[1], fs[2], sim(x[:,1], Xx[:,2], dim=0), sep="\t')

['did' '"hi' 'hit' 'mark' ‘'oh']

[[0.60534851 O. 0.79596054 0. 0. |
[1. 0. 0. 0. 0. ]
[O. ©.57735027 0. ©.57735027 0.57735027]]

I did not hit her I did not 0.6053485081062917

I did not hit her Oh hi Mark 0.0

I did not Oh hi Mark 0.0

did hit 0.5178561161676976
hi hit 0.0 35



BM25

* Created 1994 by Robertson et al.
* Grounded in probabilistic retrieval

* In general, BM25 improves on TF-IDF results

e But only set as a default scoring in Lucene in 2015

Original paper: http://www.staff.city.ac.uk/~sb317/papers/robertson_walker_sigir94.pdf

TF-IDF vs BM25 in Lucene https://opensourceconnections.com/blog/2015/10/16/bm25-the-next-generation-of-lucene-relevation/

36
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BM 25 (as defined by Robertson et al. 2009)

tftd |ID| —df:+ 0.5

BM25(q,d) = Y v log
ceranty ki((1—Db) + b%) Ftfy dfe + 0.5

e Simpler than the original formula
* Over time it was shown that more complex parts not needed

Details (a lot of them): The Probabilistic Relevance Framework: BM25 and Beyond
http://www.staff.city.ac.uk/~sb317/papers/foundations bm25 review.pdf

2

tfta

di,

avgdl

D]

df

ki,b

Sum over all query
terms, that are in
the index

Term frequency

Document length

Average document
length in index

Total # of
documents

# of Documents
with tf, >0

Hyperparameters
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BM25 vs. TF-IDF

e Simple case of BM25 looks a lot like TF-IDF

* 1 main difference: BM25 tf component contains saturation function
* Therefore works better in practice

* BM25 variants can be adapted to:
* Incorporate additional reference information
* Long(er) queries
* multiple fields

38



BM?25 vs. TF-IDF - Saturation

6.0

* TF-IDF: weight is always
increasing (even with log)

5.0

* BM25: diminishing returns
: quickly = asymptotically
approaches k1 + 1

e Note: we added (k1+1) to the numerator to make

tf@1 =1, but it does not change the ranking
because it is added to every term

0 2 4 6 & 10 12 14 16 18 20 22 24 26 28 30 Note: we assume the doc length = avgd|

tf - Term Frequency

—log(14tf) —— (k1+1)*tf/ (k1 +tf);kl=1,2 39



BM?25 vs. TF-IDF - Example

e Suppose your query is “machine learning”

e Suppose you have 2 documents with term counts:
e docl: learning 1024; machine 1
e doc2: learning 16; machine 8

« TE-IDF: log(tf) * log(|D|/df)  BM25: k; = 2

e docl: 11*7+1*10=87 e docl:3*7+1*10=31
e doc2:5*74+4*10=175 e doc2: 2.67*7+2.4*10=42.7

Example taken from: https://web.stanford.edu/class/cs276/

40
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Hyperparameters

* k1, b are hyperparameters = they are set by us, the developers

* k1 controls term frequency scaling
e k1 =0is binary model; k4 large is raw term frequency

e b controls document length normalization

b =0is no length normalization; b = 1 is relative frequency (fully scale by
document length)

e Commonranges:0.5<b<0.8and1.2<k;<2



Summary: Part 1

G We save statistics about terms in an inverted index

Q The statistics in the index can be access by a given term (query)
9 TF-IDF & BM25 use term and document frequencies to score a query & doc

42



IR — Introduction, Evaluation

€@ Introduction

* Inverted Index

e Search & Relevance
 TF-IDF & BM25

* LSA

@ Evaluation

* Precision & Recall
* MRR & MAP
* nDCG
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Latent Semantic Analysis (LSA)

* TF-IDF is actually pretty stupid:
e Carvs cars » lemmatisation, wordnet...
 Carvs automobile > different tokens!
* No generalisation

* TF-IDF is very sparse.:

* We need to keep track of an M x N matrix of token frequencies
* M: documents, N: vocab size

 Say 10,000 words, 10,000 documents: 100M values
* BERT & GPT2: 410M parameters

44



Latent Semantic Analysis (LSA)

* Basic idea: use singular value decomposition (SVD) to
encourage generalization.

LSA: Count!

* Factorize a (maybe weighted, maybe log scaled) term-document
or word-context matrix (Schiitze 1992) into U2VT

* Singular value decomposition (SVD)

* Retain only k singular values, in order to generalize.
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Latent Semantic Analysis (LSA)

e Step 1: Build a Term-Document Matrix

Doc 1 Doc 2 Doc 3
cat 2 0 1
dog 1 3 0
apple 0 0 2

e Step 2: Apply Singular Value Decomposition (SVD)

* U: word embeddings
e V: document embeddings T
e 2: diagonal matrix of singular values A— — UE \’

(importance of each latent dimension)

46



Latent Semantic Analysis (LSA)

* Step 3: Reduce Dimensionality
* Keep only the top k singular values and columns of U and V:

Ar = U2V,

L 4
4

1 4

iy -
g

VI
* This low-rank approximation smooths noise and reveals latent
semantic dimensions.
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Latent Semantic Analysis (LSA)

* Corpus (3 semantic clusters):

* Doc
* Doc
* Doc
* Doc
* Doc
* Doc
* Doc
* Doc
* Doc

(ML): ‘'machine learning with neural networks'
ML): 'deep learning requires lots of data’

ML): ‘'machine learning algorithms train on data’
Sports): 'football players run on the field'

0

1(

2 (

3 (

4 (Sports): teams of football score many points'

5 (Sports): 'teams need a football manager on the pitch’
6 (Tech): ‘computers process information quickly'

7 (Tech): '‘programming languages create software'

8 (

Tech): 'databases store structured data’

* Building TF-IDF Matrix

* Term (Vocab) size: 31
e TF-IDF matrix shape: (9, 31)

(No. of docs, No. of term dimensions)

* LSA matrix shape: (9, 2)

(No. of docs, No. of latent dimensions)

LSA Component 2 (12.8% variance)

Document Clustering in 2D LSA Space (ML, Sports, Tech)

0.8

0.7

0.6

0.5

0.4 1

0.3

0.2 1

0.1+

0.0 4

.B‘:’;

D3

D&

D8

® M
@ Sports
Tech

+=E¥m =P2

0.0 0.1

0.2

0.3 0.4 0.5
LSA Component 1 (12.1% variance)

0.6 0.7 0.8
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* nDCG
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Evaluation

* We evaluate systems to observe concrete evidence for a hypothesis
* |s our system better than the other one?

* IR systems are hard to evaluate
* Ambiguity — what is relevant? In which context? Humans differ a lot ...
* Collection size — explosion of query-document pairs

* Different types of result quality evaluation:
* Intrinsic: Fixed set: same collection, query set & labels
» Extrinsic: Observe behavior of users (in production system)*

* Could also be a user study, beta version, etc...

50



The World of Evaluation

* Today we focus on evaluating the result quality of our own IR system
* Does a document contain the answer for our query?

* Many other possibilities:
 Efficiency
* How fast can we index, return results for a query, how large becomes our index on disk?
* Fairness, diversity, content quality, source credibility, effort, ...

* Retrieval in the context of a larger goal

* How many products, services do we sell through search

* How well does our website integrate with Google, Bing, etc.. (SEO)
* Optimizing a Blackbox

51



Extrinsic Evaluation Setup

* Quality of systems, that produce ranked list of documents
* Compa red by d pool ofjudgements (does not necessarily cover the whole list)

* Missing judgements are often considered as non-relevant

O\ Half-sour O\ Half-sour

|/MapknoT

documents

Relevant

\ Not Relevant

Ranked Retrieval Results Known Judgements



Comparing Systems

* We have multiple IR systems running
on the same documents & same query

* How to compare them? Evaluation metrics to the rescue!

O\ Half-sour O\ Half-sour q Half-sour

System A System B System C
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€@ Introduction

* |Inverted Index
e Search & Relevance
e TF-IDF & BM25

@ Evaluation

* Precision & Recall
* MRR & MAP
* nDCG
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Precision & Recall

relevant elements

false negatives true negatives

® o ® O o) How many selected

items are relevant?

true positives false positives

Precision =

selected elements

From: Wikipedia https://en.wikipedia.org/wiki/Precision_and_recall

How many relevant
items are selected?

Recall =
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Precision/recall tradeoff

You can increase recall (R) by returning more documents
e Recall is a non-decreasing function of the number of documents retrieved
* A system that returns all docs has 100% recall!

The converse is also true: It’s easy to get high precision (P) for very low recall

Combined measure F-score:
allows us to trade off precision against recall

Mostly used measure: F1 or the harmonic mean of P and R

P X R

F. =2x
1 P+R

56



Example for precision, recall, F1

Relevant | Non-relevant
Retrieved 20 40 60
Not retrieved | 60 1,000,000 1,000,060
80 1,000,040 1,000,120
20 1
P o = —
(20 + 40) 3
20 1
R = = —
(20 + 60) 4
1.1
F1l = 2x3—4 e

1 1
3712

Relevant Non-relevant
Retrieved TP FP
Not retrieved FN TN

o TP
" TP + FP

. TP
~ (TP + FN)

o g PXR
727 P+R

R
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IR — Introduction, Evaluation

€@ Introduction

* |Inverted Index
e Search & Relevance
e TF-IDF & BM25

@ Evaluation

* Precision & Recall
* MRR & MAP
* nDCG
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Ranking List Evaluation Metrics

* Binary labels
* MRR: Mean Reciprocal Rank
* MAP: Mean Average Precision

 Graded labels

e nDCG: normalized Discounted Cumulative Gain

* Typically we measure at a cutoff @k of the top retrieved documents

* MAP, Recall: @100, @1000
* Precision, MRR, nDCG: @5, @10, @20

Some nice explanations: https://medium.com/swlh/rank-aware-recsys-evaluation-metrics-5191bba16832
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MRR: Mean Reciprocal Rank

Users look at results from the top; gets annoyed pretty fast; stops once
they found the first relevant; doesn’t care about the rest

'V'e/an over all queries * MRR puts the focus on the first
) ) relevant document
MRRQ) =1o1* 2 FirstRank(q) * Applicable with sparse judgements or
1=¢ assuming users are satisfied with one
A relevant document
Reciprocal Rank
Q Q] FirstRank(q)

Query Set Number of Queries  Returns the Rank of the first relevant document for 1 query .



MRR: The Reciprocal Rank

* Reciprocal Rank: 1;

* Very strongly emphasis t

ne first position

-0:5

* x is plotted continuously, but in MRR x is discrete with the position in step size of 1

8 9 1

12

1

3

1

4

1

5

1

20



MRR: An Example

* Example for Reciprocal Rank:

Q Half-sour Q Half-sour q Half-sour

i
997

oA i A,
System A l l System B l System C

RR=1 RR=1/3 RR=1/2




MAP: Mean Ave Precision

every time they relevant
full picture of what has been before

Users look at results
document, they loo

Mean over all queries Prec * MAP squeezes complex evaluation

\  rele

1 ok p P *
MaP@ =g+ 3 LIS
€0 * MAP corresponds to the area under
N the Precision-Recall curve

Average Precision

Q 10| P(q)@ rel(q) Irel(q)|

Precision of query ¢ Binary Relevance of Number of relevant

Query Set  Number of Queries after first i documents doc at position i documents
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MAP: Mean Average Precision

* Example for Average Precision (2 relevant docs)
 Mean is then calculated for multiple queries, for each system

q Half-sour q Half-sour Q\ Half-sour

P=1

P=2/3 P=1/3

System A System B System C
2 1 1 2

AP =1—2+€ —0.83 AP=13 =0.16 AP=23 =058




IR — Introduction, Evaluation

€@ Introduction

* |Inverted Index
e Search & Relevance
e TF-IDF & BM25

@ Evaluation

* Precision & Recall
* MRR & MAP
* nDCG
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Graded Relevance

* Previous metrics all use binary relevance labels
* Simple enough or too simple?

* Major problem: Of course there can be a difference in importance of
relevance

* Binary labels can not distinguish

* Graded relevance allows to assign different values of relevance

* Can be floating point or fixed set of classes for manual annotation
* Fixed set of classes for manual annotation
* Floating point can be used when relevance inferred from logs
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Common Graded TREC Relevance Labels

[3] Perfectly relevant: Document is dedicated to the query, it is worthy
of being a top result in a search engine.

[2] Highly relevant: The content of this document provides substantial
information on the query.

[1] Relevant: Document provides some information relevant to the
query, which may be minimal.

[0] Irrelevant: Document does not provide any useful information
about the query
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NnDCG: normalized Discounted Cumulative Gain

Users take for each document the relevance grade and position into
account, normalize by best possible ranking per query

* NnDCG compares actual results with

DCG(q) - 3 relfd) maximum per query
log>(i+1) .
dep, i=1 * Relevance is graded
nDCG(Q) =|%|*z DCG(ngtiElcgﬂel(q)) * nDCG@10 most commonly used in
J€0 moderq offline web search
evaluation
Q | Q] D rel(d) rel(q) sorted()

Single Doc.  Relevance grade for  List of all relevance  Return graded documents by

Query Set  # of Queries Result list single query-doc pair grades for a query descending relevance



NnDCG: A Closer Look

Discounted cumulative gain

AN ‘ _—

rel(d)
DCG(q) = log2(i + 1)
deD, i=1
1 DCG(q)
DCG =—_,2
nbeG(Q) 10| *~ DCG(sorted(rel(q))
q€qQ
Mean over all queries
Q Q] D rel(d)
. SingleDoc.  Relevance grade for
Query Set  # of Queries Result list  single query-doc pair

Gain (relevance value, commonly 0 -> 3)

‘ ™~ Position Discounting

Actual Results
/

‘ T Best possible sorting
(ground truth)

rel(q)

List of all relevance
grades for a query

sorted()

Return graded documents by
descending relevance 69



nDCG: Position Discounting

 Comparing the document position discount with reciprocal rank
* Only for binary case rel=1

e nDCG discounts less than MRR

2|

logz(x +1)

70
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nDCG: Example

e Assuming two differently relevant docs (rel =3 & 1)

3

1

e |deal DCG =

logy(1+1)

= 3.63

log2(2+1)

q Half-sour

<
<«

System C

1.9+0.5

nDCG= = 0.66

q Half-sour

Ideal System

3
logz(l +1)

1

logx2+1)
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Summary: Part 2

0 We compare systems with a set of query and document relevance labels

@ Binary metrics (MRR & MAP) are a solid foundation for evaluation

9 Graded relevance allows for more fine-grained metrics (nDCG)
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