Word Representation ll:
Statistical Methods

Lecture 5

Announcements

* Late submission by a few minutes:
* No problem. Just don’t do it for HW2.

* HW2 will be posted soon (today or tomorrow).

* One more lecture this Thursday, two PSs next week.
* Today: Language Model before Transformer.
* Thursday: Transformers.

* Next 4 PSs: Hovhannes walks through the entire Transformer architecture.

Outline

* Global Word Embeddings
* Word2vec
* GloVe

* Contextual Word Embeddings
* Language Modelling
* RNN

Softmax

* Say now we have a lot of logits: x = |z1,...2,],2; € (—00, +00)
* We want a probability distribution that

T p=fX) =11, pal = fE1, - xn]) = (@), fn)

* Probability distribution -> everything sumsto 1. Z p=1
* Differentiable everywhere.

e Solution:
exp(z;)

Zj exp(z;)

Softmax(x;) =

Representing Data

* Earlier success in computer vision.
* Navlab 5 (Jochem et al., 1995)

* Much more intuitive to convert images into vector representations.

Representing Data

* Numeric Data:
* E.g. credit score:

Give Me Some Credit (gmsc): https://www.kaggle.com/c/GiveMeSomeCredit 6

https://www.kaggle.com/c/GiveMeSomeCredit

Representing Data

* Numeric Data: * Videos:
° E.g. Credit score: ¢ |mageS on a t|mel|ne
* Images:

* Gray scale or RGB

MNIST dataset
Handwritten numbers 7

Representing Textual Data

* The vast majority of rule--based and statistical NLP work regarded
words as atomic symbols. oets the | a | an

Adj - old | red | happy | ..
* Recall Lecture 3:

N - dog | park | ice-cream | contumely | run
V - saw | ate | run | disdained | ..

P > 1in | to | on | under | with | ..}

* Vector space: this is a vector with one 1 and a lot of zeroes:
[0 000000000100 0 9]

* The “one-hot” representation
* i-th word in the dictionary:

UV; — 1,\V/j7éi,f0j — ()

Representing Textual Data: Problems

* There are a lot of words!

e Oxford English Dictionary: 500,000+ entries
* Longman Dictionary of Contemporary English: 230,000 words
* Brysbaert etal. (2016): 42,000 lemmas

e As aresult. a lot of BIG vectors! « Cosine similarity measures the cosine of
’] . the angle between two vectors.
* Forreference, (L)LM dimensions: « Inner product normalized by the vector
lengths. ;
- BERT, GPT-2: 768 R i Sy
» Llama-3-8B: 4096 R /I TR A
* Llama-3.1-405B: 16384 > ,
1 1 1 1 1 . D; = 2T, + 3T, + 5T; CosSim(D; , Q) = 10 / N(4+9+25)(0+0+4) = 0.81
* N O u Sefu l‘ SI m I la rlty I nfo rmatIO n ¢ 1Dy = Sl = .J/f; CosSim(D, , Q)= 2/ \/((9+49+1)(>O+0+4) =(.13

Q =0T, + 0T, + 2T,

* Motel: [0 © 0 0000 0@
* Hotel: [0 ©@ ©0 © @ ©
* Linguist:[©@ 1 ©0 0 @ ©

D is 6 times better than 1D, using cosine similarity but only 5 times better using
inner product.

00109
© 0009
© 0009

OO0
OO0

01
0 9

OO0
—

* cos_sim(motel, hotel)=0, cos_sim(motel, linguist)=0, cos_sim(hotel, linguist)=0

Distributional similarity based representations

* You can get a lot of value by representing a word by means of its
neighbors:

e “Noscitur a sociis”

* The meaning of an unclear or ambiguous word should be determined by
considering the words with which it is associated in the context.

* 19th-century rule of interpretation in English civil courts.

* One of the most successful ideas of modern NLP

government debt problems turning into banking crises as has happened in

saying that Europe needs unified banking regulation to replace the hodgepodge

N These words will represent banking 24
10

With distributed, distributional representations,
syntactic and semantic information can be captured

0.286

0.792

-0.177

-0.107

shown = 0.109
-0.542

0.349

0.271

Synonymy? Hyponymy?
Morphology?

- RN
u CHOSEND
m STOLEN
& STEAL
OSTOLE
OSTEALING
ING .TAKENDTAKING
o TOOK
= THEGMERTIEE W
m SHOWN
O SHOWED m EATENT
o ATE
O SHOWING OEATING
& SHOW
" At
o GREW
O GROWING

[Rohde et al. 2005. An Improved Model of Semantic
Similarity Based on Lexical Co-Occurrence] 11

Two Kinds of Vectors

* Count:
 tf-idf, PMI, LSA
 Sparse!
* |Information Retrieval workhorse!
* Words are represented by (a simple function of) the counts of nearby words

 Predict:
 word2vec, GloVe, BERT, GPT-2, GPT-3, GPT-4...
e Dense!

* Representation is created by training a classifier to predict whether a word is
likely to appear nearby

* Contextual embeddings.

12

Word2vec

Word2vec CBOW/SkipGram: Predict!

* Train word vectors to try to either

* Predict a word given its bag-of-words
context (CBOW); or

* Predict a context word (position-
independent) from the center word

* Update word vectors until they can
do this prediction well

Input projection output
w(t-2
‘ (t-2)
< w(t-1)
wi(t) >
4 w(t+1)

« W(t+2)

13

Skip-Gram Training Data

* Assume a +/- 2 word window, given training sentence:

..lemon, a [tablespoon of apricot jam, a] pinch
cl c2 [target] c3 c4
* Goal: train a classifier that is given a candidate (word, context) pair

* And assigns each pair a probability:
* P(+|w, c)
* P(=|w, c)=1-P(+|w, c)

14

o] Output Layer
Word2vec training regimen Softmax Classifier

H Idden Layer Probability that the word at a
Linear Neurons randomly chosen, nearby
Input Vector position is “abandon”
: (2
0
0 ’ ... “ability”
0
0 \
: ok 2
A ‘1" in the position 0 ' ... "able”
corresponding to the —#» n \
word “ants”
0
0
A
i 2
10,000 :
positions \
300 neurons .. "'zone”

10,000
neurons

15

class Word2Vec(nn.Module):

def _ init (self, vocab_size, embedding size):
super(). init_ ()
self.embed = nn.Embedding(vocab _size, embedding size)
self.expand = nn.Linear(embedding size, vocab_size, bias=False)

def forward(self, input):
Encode input to lower-dimensional representation
hidden = self.embed(input)
Expand hidden layer to predictions
logits = self.expand(hidden)
return logits

16

Approach: predict if candidate word c is a "neighbor"

1. Treatthe target word t and a neighboring context word c as
positive examples.

2. Randomly sample other words in the lexicon to get negative
examples.

3. Use logistic regression to train a classifier to distinguish those
two cases.

4. Use the learned model activations as the embeddings.

17

Word Analogies: word2vec captures dimensions of

similarity as linear relations

Test for linear relationships, examined by Mikolov et al. (2013)

man:woman :: king:?

+ king
- man

+ woman

queen

10.300.70]

0.200.20 |

0.600.30]

[0.70 0.80]

1

0.75

0.5

0.25

gueen

king

we WOMan

xMan

0.25 0.5 0.75 1

18

Word Analogies
[Mikolov et al., 2012, 2013}

Type of relationship Word Pair 1 Word Pair 2
Common capital city Athens Greece Oslo | Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago [llinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

-

19

Count-based VS.

* Fast training
* Efficient usage of statistics

* Long & Sparse!
* Length =|V]|
* most elements are zero

* Primarily used to capture word
similarity

* Disproportionate importance
given to small counts

Direct Prediction

* Scales with corpus size
* Inefficient usage of statistics

e Short and Dense

* Length = any hidden size (50-10000)

* Nearly nothing is zero

* Generate improved
performance on other tasks

* Can capture complex patterns

beyond word similarity

20

Encoding meaning in vector differences

* Key idea:

* Ratios of co-occurrence probabilities can encode meaning components

Probability and Ratio | &k = solid k = gas k = water k = fashion
P(klice) 1.9x 107 6.6 x 107> 3.0x107% 1.7x107°
P(k|steam) 22x10°° '78x10°* 22x102 18%10°
P(klice)/ P(k|steam) 8.9 8.5 x 1072 1.36 0.96

Pennington et al. (2014)

21

Encoding meaning in vector differences

* How can we capture ratios of co-occurrence probabilities as
meaning components in a word vector space?

e Solution: o
* Log-bilinear model: Wi+ Wi = log P(z|_7)
. . Pl(z|a
» with vector differences: w,, - (w, — wp) = log PEm b%

Pennington et al. (2014)

22

GloVe: A new model for learning word representations

P(z|a)
P(x|b)

weighting function biases

Vv
J = Z f (XU') (W?FL’J- + b; +Ej — 1::1gX1-v,-)2
i,j=1

dot product
(similarity)

Co-ocurrence count
23

https://github.com/noaRricky/pytorch-glove
class GloVeModel(nn.Module):

def __init_ (self, embedding size, context_size, vocab_siz)
self.focal embeddings = nn.Embedding(
vocab_size, embedding size)
self.context_embeddings = nn.Embedding(
vocab_size, embedding size)

self.focal biases = nn.Embedding(vocab_size, 1)
self.context_biases = nn.Embedding(vocab_size, 1)

def loss(self, focal input, context_input, coocurrence_count):

|4
focal_embed = self.focal_embeddings(focal_input) J = Z f (X) (WT‘PT} + Db+ E’ e logX .)2
- tj i) ' J tJ
1,j=1

context_embed = self.context_embeddings(context_input)
focal bias = self.focal biases(focal input)
context_bias = self.context_biases(context_input)

count weight factor
weight factor = torch.pow(coocurrence _count / x_max, alpha)
weight factor[weight factor > 1] =1

embedding_products = torch.sum(focal embed * context_embed, dim=1)
log cooccurrences = torch.log(coocurrence_count)

distance_expr = (embedding products + focal bias +
context_bias + log cooccurrences) ** 2

single losses = weight factor * distance_expr
mean_loss = torch.mean(single losses)
return mean_loss

24

Word Similarities

Nearest words to frog:
frogs

toad

litoria
leptodactylidae
rana

lizard

N Ok 0=

eleutherodactylus

5. rana

7. eleutherodactylus

25

Linear Structures: Visualizations

0.5

0.4

0.3

0.2

0.1

r heiress 7]
:
v J]
g I - countess
- aunt | /" »duchess-
r?isteﬂI [! f.'
- by 4 S »empress
I | / i
. N
i I | © rmadam / " -
I | Co r
| . 1 I}
i - nepHew h:&" L |
' I /! / A
! . j WA ; loar
- | ear ;
| uncle | / rqueern /
! brother | ! I' /{duke
- .I [/ —
.' / . £
i ; / | ‘emperor |
/ f [
i / I
- ! ! | -
r {sir I
L ‘man L king .
| 1 1 | 1 1 1 | | | |
-05 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

26

Linear Structures: Visualizations

0.8

0.4

0.2

-0.6

-0.8

Caterpillar. _
Chrysler.. _ T e
United~ _ _ T e a = B
o S e — —+ Oberhelman
€ g — ~Marchionne
Exxon°———-__h__\\\‘\\ .
T vt Smieelk
Tillerson
TR A R S S SIS SRS S McMillon
Citigroup,
IBM = - == Z=Z===
— === == am— —,Corbat
Rometty
PR e te e e sox i Sameterses ond Dauman
Viacom .McAdam
_ e m 2T =""Colao
Verizone = < — —

Vodafone

-0.8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Linear Structures: Visualizations

DS | I [I I [[|
~ _ — — — slowest
0.4 o ey ST .
_ “slower _ _ _ _ — — —-=shortest
P e i
0.3 -~ _ “’'shorter _
' slow -
-~
-~
short~
0.2 -
01 n
ok _“stronger” ©— T — = — — — — — _ girongest |
/
- _~-Touder — — — — — — — — — -~ _ _ .
strong _ loudest
-0.1 loud_. “"_ _ _ _ _ -
S cleelrei - T T 7 = — — — —clearest
o T RISH T T T T T = = = — «softest
- -
0.2 clear;”“jf'c_iaﬂie'F_“——L——______,dkt |
soft - _ - arkes
dark <
-0.3 | I | I I | | | !
-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

28

Analogy evaluation and hyperparameters

Accuracy [%]

72r

70F

68f

66}

64t

62r

60

3 6 9 12 15 18 21 24

Training Time (hrs)

POV amn

GloVe

e SKip-Gram
20 40 . 60 80 100
Iterations (GloVe)
12345 6 7 10 12 15 20

Negative Samples (Skip-Gram)

29

Word Embedding Conclusion

* Developed a model that can translate meaningful relationships
between word-word co-occurrence probabilities into linear
relations in the word vector space.

* GloVe shows the connection between Count! work and Predict!
work —appropriate scaling of counts gives the properties and
performance of Predict! models

30

adverbs verbs adjectives nouns

appropriately actualize 24/7 action items
assertively administrate 24/365 adoption
authoritatively ~ aggregate accurate alignments
° collaboratively architect adaptive applications
I compellingly benchmark agile architectures
e rI I l I n O lo H e ll competently brand alternative bandwidth
completely build an expanded array benefits
continually cloudify of best practices
conveniently communicate B2B catalysts for change
¢ . 2 credibly conceptualize B2C channels
[) E m b e d d I n distinctively coordinate backend clouds
dramatically create backward- collaboration and idea-
dynamically cultivate compatible sharing
M o : efficiently customize best-ot-breed communities
g E m b e d d I n g laye r . t O P C h ° n n ° E m b e d d 1 n g energistically deliver bleeding-edge content
enthusiastically deploy bricks-and-clicks convergence

fungibly develop business core competencies

* Linear layer: one hot index -> vectorized representation sy dnimemeiine licksandmonar — cvstonersenie

* Basically, a big look up table } | |)
Vector(ized) Representation

* Using an n-dim vector to represent a word. The vector.
Hidden Representation; Hidden State

* The intermediate output of a neural network WS D '

* Neural LM: use this as the vectorized representation
Word Embedding:

* The model/system/algorithm that generate a vectorized representation given a word.
Word Embedding:

* The generated vectorized representation.

The Corporate B.S. Generator

31

https://www.atrixnet.com/bs-generator.html?bullshit=Word+embedding

Contextual vs. Global Word Embedding

Recall: Primitives: lexical categories or parts of

* Global Word Embedding speech.

e One vector representation Word-type Each word-type |§ a mgmber of one or more.
* Each word-token is an instance of exactly one.
* word2vec, GloVe

* Contextual Word Embedding
* One vector representation word-token
* RNN, LSTM, BERT, GPT...

32

Context is important

* WSD:

* The lawyer approached the bar.
* Frank approached the bar.

* Anything beyond lexical level:

* Anaphora:
 Maryis adoctor. She works atthe __
* Anneis afarmer. She works atthe __
* Long distance agreement:
* The books that every student have read are ... Bro conferencing at ACL 2019.

* Tasks:
* What is the capital of Germany. Itis

33

Also, we need more! What of larger semantic units?

* How can we know when larger units are similar in meaning?

* CTV News: Poilievre-led attempt to bring down Trudeau minority over
carbon tax fails.

e CBC News: Liberals survive non-confidence vote on carbon tax with
Bloc, NDP backing.

* The Beaverton: Co-worker that everyone hates surprised he can’t get
colleagues to do what he wants.

NATIONAL - 2 WEEKS AGO

Co-worker that everyone hates surprised he can’t get
colleagues to do what he wants

OTTAWA - Local man Pierre Poilievre, an employee at an Ottawa small business

named the House of Commons, was surprised that none of the colleagues who despise

him were willing to support hi...

34

Language Modelling Task

* Final goal: predict/estimate the probability of a sequence

Probability(Some sentence over here.)

* Language Models:
* Estimate the likelihood of sequence of texts.
* Model that assigns probabilities to sequences of words.
* (All good definitions)

books

* Actual task: J e aton
e Predict the next word the students opened their
\\ exams
- MLM minds

35

Likelihood, Probability of What?

* Areally vague, abstract notion of how likely this sentence can
appear in real-world, natural language discourse.

* Ultimate Goal: create a statistical model to describe some large
quantity of corpora data, that ultimately capture the statistical

structure of “Language.”

* Again, the practical definition of Language Model is:
* Estimate the likelihood of sequence of texts.

* Model that assigns probabilities to sequences of words.
(both are fine)

* Likelihood is not: (related terms)
 Grammaticality, acceptability, syntactic well-formedness, “make sense,”
well written ...
* Colorless green ideas sleep furiously. -> Chomsky was terribly wrong.

36

The Language Modelling Pipeline

* Collect large quantity of unstructured data
* Wikipedia articles, social media post, news articles...
* Famous open-source: WikiText-2/103 (100M Tokens), Dolma (3T tokens)

e Tokenization

* The Technische Universitat Darmstadt, commonly known as TU Darmstadt, is a public
research university in the city of Darmstadt, Germany.

* ['The', 'GTechn', ‘'ische', ‘'GUnivers', 'it', 'Aw', 't', 'GD', ‘'arm', 'stadt’, ',’,
'@commonly',"Gknown', 'Ggs', 'GT', 'U',.'GD', iarm', '§tadt', '{', 'Gig', 'Ga',
"Gpublic', 'Gregearch', 'Guniversity', 'Gin', 'Gthe', 'Gcity', 'Gof', 'GD', ‘arm',
‘stadt', ',', 'GGermany', '.']

* Train the actual model by performing the language modelling task:

* Next Word Prediction, Masked Language Modelling, ...

37

Language Modelling is NOT Unsupervised!

* Supervised vs. unsupervised learning.

* Supervised learning: labelled data.

* Unsupervised learning: unlabelled data, find structure in data itself.
 E.g., Clustering (e.g., K-Means) and Dimensionality Reduction (e.g., PCA, t-SNE).

* Language modelling tasks require direct supervision.
* Label: next token.

* Why many people call Language Modelling unsupervised?
* Data collection: unprocessed, unstructured raw text from the internet.

* Basically free!
* Indeed, we may not need to hire people to do any labelling or annotation.

38

Language Modelling is NOT Unsupervised!

* Why many people call Language Modelling unsupervised?

| Y\ - ~
* OTtE 0

* No longer the case now (2023, 2024ish)!

* The major LLM research labs (Qwen, Llama, OpenAl...) have used nearly
all the data human ever created.

* Most commercial models need large amount of curated data.

39

What's the best way
to follow how the
news is changing?

Our daily email, with
all the freshest future-
of-journalism news.

your email address he

Subscribe

THE LATEST FROM NIEMAN LAB

Meet the journalists training Al
models for Meta and OpenAl e mrarralie

: o _ o _ broadcasters in the
The gig work platform Outlier is one of several companies courting journalists Trump era

BBC resignations are a

to train large language models (LLMs). DENIS MULLER

https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/

40

https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/
https://www.niemanlab.org/2025/02/meet-the-journalists-training-ai-models-for-meta-and-openai/

Tokenization and Tokenizers

* Character-level language modeling:

* Classifying Names with a Character-Level RNN
* Good with Chinese
* Other languages: inefficient use of data

* Tokenization: breaks down text into smaller units, often called tokens.
* text.split()

* The only difficulty: unknown token.
e Special <unk> token
#longexposurephotography Rechtsschutzversicherungsgesellschaft
Long exposure photography Rechts Schutz Versicherung s Gesellschaft
legal protection insurance company

41

Agglutinative language

3
Cekoslovakya - Czechia(in ussr) y %3
-(U1: from
-(Dastr : to (let it) become o s
-(a)ma : not N ¢ A
di : past / \
-k: 1st pronoun(us) { j . f
-lar: plural : e 1 ¥

-(1)miz: (from) us

! k ‘ . :

.(-\ \.- ! E !
-dan: out of /from A ot {’) S
-mis : past (heard) \ y | {

-si(n)1z: you /

¥ ¥

Eiskaffee Cekoslovakyalilastiramadiklarimizdanmissiniz

“You are reportedly one of those that we could

not make Czechoslovakian.”
42

Tokenization and Tokenizers

* Solution: Break a word down into subwords, or word pieces!

* Slightly different encoding styles
colorless green ideas sleep furiously
 BERT: ‘color', "##less', 'green', 'ideas', 'sleep', 'furiously’
e GPT/LLaMA: 'color', 'less', 'Ggreen', 'Gideas', 'Gsleep', 'Gfuriously’

e XLM: ‘color', 'less</w>', 'green</w>', 'ideas</w>', 'sleep</w>', 'furiously</w>’

43

Byte Pair Encoding (BPE)

Subword tokenization technique.
Used for data compression and dealing with unknown words.

Initialization:
Vocabulary = set of all individual characters.
V={A,B,_C,..a,b,c..1,2,3,..,% %,..}

Repeat:
* Choose two symbols that appear as a pair most frequently (say “a” and “t”).
* Add new merged symbol (“at”).
* Replace each occurrence with the new symbol (“t”,’h”,”a”’t” -> “t”,”h”’at”).

Until Kk merges have been done. Usually, we select a pre-defined vocabulary size (k).

44

Byte Pair Encoding (BPE)

Segments: Vocabulary:

5 low</w </w>, d, e, I, 1, n,b, o, r, s, t, w
2 lowest</w

6 newer</w

3 wider</w

2 new</w

Most frequent symbol pair: er (9 times)

Segments: Vocabulary:

5 low</w </w>, d, e, I, 1, n, o, r, s, t, w, er
2 lowes t</w

6 newer </w

3 wider</w

2 new</w

Byte Pair Encoding (BPE)

Segments: Vocabulary:

5 low</w </w>, d, e, I, 1, n, o, r, s, t, w, er
2 lowest</w

6 newer</w

3 widerc</w

2 new</w

Most frequent symbol pair: er</w> (9 times)

Segments: Vocabulary:

5 low</w </w>, d, e, I, 1, n, o, r, s, t, w, er,
2 lowes t</w er</w>

6 newer</w>

3 wider</w

2 new</w

Byte Pair Encoding (BPE)

Segments: Vocabulary:

5 low</w </w>, d, e, I, 1, n, o, r, s, t, w, er,
2 lowest</w er</w>

6 newer</w

3 wider</w

2 new</w

Most frequent symbol pair: ne (8 times)

Segments: Vocabulary:

5 low</w </w>, d, e, I, 1, n, o, r, s, t, w, er,
2 lowest</w er</w>, ne

6 ne w er</w»>

3 wider</w

2 ne w </w>

Limitations

* Doesn’t work well for other writing systems:

* Especially Arabic.
* Typos:
e participating -> 'Gparticipating'

e partcipating ->'Gpart', ‘'c', 'ip', ‘'ating’

* “How many r’s does the word strawberry has?”

48

Possible Future Directions

* Byte-based tokenization

* Byte Latent Transformer
* Pagnoni et al. (2025).

* Language (writing system)
specific tokenization.

* E.g., Arabic: morphological
methods.

* Modularity & model
merging: combine models
together. (More on this later)

0000000000000000
[Local Decoder]

—(000000000000000

Iy

[Latent Transformer]

IO L

000000000000000D0
J

Local Encoder

l
p0o00000CDO0CDOOODC

_ B P E

e ’ j’4\\//\\"\\/’"\-\

5. Small Byte-Level Transformer
Makes Next-Byte Prediction

4. Unpatching to Byte Sequence
via Cross-Attn

3. Large Latent Transformer
Predicts Next Patch

2. Entropy-Based Grouping of Bytes
Into Patches via Cross-Attn

1. Byte-Level Small Transformer
Encodes Byte Stream

49

Training a Language Model

* Let’s take recurrent neural network (RNN) as an example.

r- ™ e ™ o ™)
<1> <2> <t> <t+1>
<>y , .

L _/ A _ _ _ N S

. -) CL<t_1> Ve D a{t} s N a{t—{—l}
J . vy _/ L _ L _/
.’L‘<1> $<2> $<t> $<t+1>
N, _./" \, __/'I

We will run this quick, full details in DLANLP.

50

X < f(xW + b)
A; < f(XZWm +a;,_1 W, + b)

/

Input token representation RNN hidden state

™ ' ' s ™ o

<1l> <2> <t> <t+1>
iy ’ p

A J L _/ — _J/ — _/

N O R ™ a<t—1> N g <t> Yy g <tt1>

— S

p<1> p<2> ‘ p<t> p<t+1>

51

class RNN(nn.Module):

def init (self, input size, hidden_size, output size):
i: input token, h: hidden state, o: output
self.i2h = nn.Embedding(input_size, hidden size)
self.h2h = nn.Linear(hidden_size, hidden_size)
self.h2o0 = nn.Linear(hidden_size, output size) # output size: number of labels

def forward(self, x, hidden_state):
x = self.i2h(x)
hidden state = self.h2h(hidden_state)
hidden state = torch.tanh(x + hidden_state)
out = self.h2o(hidden state)
return out, hidden_state

52

Training Regime

* Model:

* Let’s take this RNN model as an example.
* Data:

* A corpus with sentences like: a tablespoon of apricot jam
* Input:

 a tablespoon of apricot

* Output label:
* jam

53

Training Regime

* Model:

* Let’s take this RNN model as an example.
* Data:

* A corpus with sentences like: a tablespoon of apricot jam
* Input:

« a tablespoon of

* Output label:
e apricot

54

Training Regime

* Model:

* Let’s take this RNN model as an example.
* Data:

* A corpus with sentences like: a tablespoon of apricot jam
* Input:

« a tablespoon

* Output label:
e of

55

Training Regime

* Model:

* Let’s take this RNN model as an example.
* Data:

* A corpus with sentences like: a tablespoon of apricot jam
* Input:

*a
* Output label:

* tablespoon

56

Summary: How to train a neural LM

* Collect training data.

* Train the model.:
* Take a tokenized sequence
* Input: t,,t,,t;, ..., T
* Output: logits (or probability) of t...
* The LM is typically a neural model,
* trained as a typical neural model.

57

	Slide 1: Word Representation II: Statistical Methods
	Slide 2: Announcements
	Slide 3: Outline
	Slide 4: Softmax
	Slide 5: Representing Data
	Slide 6: Representing Data
	Slide 7: Representing Data
	Slide 8: Representing Textual Data
	Slide 9: Representing Textual Data: Problems
	Slide 10: Distributional similarity based representations
	Slide 11: With distributed, distributional representations, syntactic and semantic information can be captured
	Slide 12: Two Kinds of Vectors
	Slide 13: Word2vec
	Slide 14: Skip-Gram Training Data
	Slide 15
	Slide 16
	Slide 17: Approach: predict if candidate word c is a "neighbor"
	Slide 18: Word Analogies: word2vec captures dimensions of similarity as linear relations
	Slide 19: Word Analogies [Mikolov et al., 2012, 2013]
	Slide 20: Count-based vs. Direct Prediction
	Slide 21: Encoding meaning in vector differences
	Slide 22: Encoding meaning in vector differences
	Slide 23: GloVe: A new model for learning word representations
	Slide 24
	Slide 25: Word Similarities
	Slide 26: Linear Structures: Visualizations
	Slide 27: Linear Structures: Visualizations
	Slide 28: Linear Structures: Visualizations
	Slide 29: Analogy evaluation and hyperparameters
	Slide 30: Word Embedding Conclusion
	Slide 31: Terminology Hell
	Slide 32: Contextual vs. Global Word Embedding
	Slide 33: Context is important
	Slide 34: Also, we need more! What of larger semantic units?
	Slide 35: Language Modelling Task
	Slide 36: Likelihood, Probability of What?
	Slide 37: The Language Modelling Pipeline
	Slide 38: Language Modelling is NOT Unsupervised!
	Slide 39: Language Modelling is NOT Unsupervised!
	Slide 40
	Slide 41: Tokenization and Tokenizers
	Slide 42: Agglutinative language
	Slide 43: Tokenization and Tokenizers
	Slide 44: Byte Pair Encoding (BPE)
	Slide 45: Byte Pair Encoding (BPE)
	Slide 46: Byte Pair Encoding (BPE)
	Slide 47: Byte Pair Encoding (BPE)
	Slide 48: Limitations
	Slide 49: Possible Future Directions
	Slide 50: Training a Language Model
	Slide 51
	Slide 52
	Slide 53: Training Regime
	Slide 54: Training Regime
	Slide 55: Training Regime
	Slide 56: Training Regime
	Slide 57: Summary: How to train a neural LM

