
Word Representation II: 
Statistical Methods

Lecture 5
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Announcements

• Late submission by a few minutes:
• No problem. Just don’t do it for HW2.

• HW2 will be posted soon (today or tomorrow).

• One more lecture this Thursday, two PSs next week.
• Today: Language Model before Transformer.
• Thursday: Transformers.
• Next 4 PSs: Hovhannes walks through the entire Transformer architecture.
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Outline

• Global Word Embeddings
• Word2vec
• GloVe

• Contextual Word Embeddings
• Language Modelling
• RNN
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Softmax

• Say now we have a lot of logits: 
• We want a probability distribution that

•  

• Probability distribution -> everything sums to 1. 
• Differentiable everywhere.

• Solution:
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Representing Data

• Earlier success in computer vision.
• Navlab 5 (Jochem et al., 1995)

• Much more intuitive to convert images into vector representations.
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Representing Data

• Numeric Data:
• E.g. credit score:

Monthly 
Income

Number Of Open 
Credit Lines And 

Loans

Number Of 
Times 90 Days 

Late

Number Real 
Estate Loans Or 

Lines
Number Of Time 60-89 

Days Past Due Not Worse
Number Of 

Dependents
9120 13 0 6 0 2
2600 4 0 0 0 1
3042 2 1 0 0 0
3300 5 0 0 0 0

63588 7 0 1 0 0
3500 3 0 1 0 1

NA 8 0 3 0 0
3500 8 0 0 0 0

Give Me Some Credit (gmsc): https://www.kaggle.com/c/GiveMeSomeCredit 6

https://www.kaggle.com/c/GiveMeSomeCredit


Representing Data

• Numeric Data:
• E.g. credit score:

• Images:
• Gray scale or RGB

MNIST dataset
Handwritten numbers 7

• Videos:
• Images on a timeline



Representing Textual Data

• The vast majority of rule-‐based and statistical NLP work regarded 
words as atomic symbols.
• Recall Lecture 3:

• Vector space: this is a vector with one 1 and a lot of zeroes:
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

• The “one-hot” representation
• i-th word in the dictionary:
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Representing Textual Data: Problems

• There are a lot of words!
• Oxford English Dictionary: 500,000+ entries
• Longman Dictionary of Contemporary English: 230,000 words
• Brysbaert et al. (2016): 42,000 lemmas

• As a result, a lot of BIG vectors!
• For reference, (L)LM dimensions:

• BERT, GPT-2: 768
• Llama-3-8B: 4096
• Llama-3.1-405B: 16384

• No useful similarity information:
• Motel:     [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]
• Hotel:     [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]
• Linguist:[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

• cos_sim(motel, hotel)=0, cos_sim(motel, linguist)=0, cos_sim(hotel, linguist)=0 9



Distributional similarity based representations

• You can get a lot of value by representing a word by means of its 
neighbors:

• “Noscitur a sociis”
• The meaning of an unclear or ambiguous word should be determined by 

considering the words with which it is associated in the context.
• 19th-century rule of interpretation in English civil courts.

• One of the most successful ideas of modern NLP
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With distributed, distributional representations, 
syntactic and semantic information can be captured
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Two Kinds of Vectors

• Count:
• tf-idf, PMI, LSA
• Sparse!
• Information Retrieval workhorse!
• Words are represented by (a simple function of) the counts of nearby words

• Predict:
• word2vec, GloVe, BERT, GPT-2, GPT-3, GPT-4…
• Dense!
• Representation is created by training a classifier to predict whether a word is 

likely to appear nearby
• Contextual embeddings.
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Word2vec

Word2vec CBOW/SkipGram: Predict!
• Train word vectors to try to either

• Predict a word given its bag-of-words 
context (CBOW); or

• Predict a context word (position-
independent) from the center word

• Update word vectors until they can 
do this prediction well
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Skip-Gram Training Data 

• Assume a +/- 2 word window, given training sentence: 

…lemon, a [tablespoon of apricot jam, a] pinch

    c1   c2 [target] c3  c4

• Goal: train a classifier that is given a candidate (word, context) pair
• And assigns each pair a probability:

• P(+|w, c)
• P(−|w, c) = 1 − P(+|w, c)
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Word2vec training regimen
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class Word2Vec(nn.Module):

  def __init__(self, vocab_size, embedding_size):
    super().__init__()
    self.embed = nn.Embedding(vocab_size, embedding_size)
    self.expand = nn.Linear(embedding_size, vocab_size, bias=False)

  def forward(self, input):
    # Encode input to lower-dimensional representation
    hidden = self.embed(input)
    # Expand hidden layer to predictions
    logits = self.expand(hidden)
    return logits



Approach: predict if candidate word c is a "neighbor" 

1. Treat the target word t and a neighboring context word c as 
positive examples. 

2. Randomly sample other words in the lexicon to get negative 
examples.

3. Use logistic regression to train a classifier to distinguish those 
two cases.

4. Use the learned model activations as the embeddings.
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Word Analogies: word2vec captures dimensions of 
similarity as linear relations
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Test for linear relationships, examined by Mikolov et al. (2013)



Word Analogies
[Mikolov et al., 2012, 2013]
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Count-based   vs.  Direct Prediction

• Fast training
• Efficient usage of statistics

• Long & Sparse!
• Length = |V|
• most elements are zero

• Primarily used to capture word 
similarity

• Disproportionate importance 
given to small counts

• Scales with corpus size
• Inefficient usage of statistics

• Short and Dense
• Length = any hidden size (50-10000)

• Nearly nothing is zero
• Generate improved 

performance on other tasks
• Can capture complex patterns 

beyond word similarity
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Encoding meaning in vector differences

• Key idea:
• Ratios of co-occurrence probabilities can encode meaning components

21
Pennington et al. (2014)



Encoding meaning in vector differences

• How can we capture ratios of co-occurrence probabilities as 
meaning components in a word vector space?

• Solution:
• Log-bilinear model:

• with vector differences:

22
Pennington et al. (2014)



GloVe: A new model for learning word representations

23

dot product
(similarity)

weighting function biases

Co-ocurrence count
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# https://github.com/noaRricky/pytorch-glove
class GloVeModel(nn.Module):

  def __init__(self, embedding_size, context_size, vocab_siz)
    self.focal_embeddings = nn.Embedding(
      vocab_size, embedding_size)
    self.context_embeddings = nn.Embedding(
      vocab_size, embedding_size)

    self.focal_biases = nn.Embedding(vocab_size, 1)
    self.context_biases = nn.Embedding(vocab_size, 1)

  def loss(self, focal_input, context_input, coocurrence_count):

    focal_embed = self.focal_embeddings(focal_input)
    context_embed = self.context_embeddings(context_input)
    focal_bias = self.focal_biases(focal_input)
    context_bias = self.context_biases(context_input)

    # count weight factor
    weight_factor = torch.pow(coocurrence_count / x_max, alpha)
    weight_factor[weight_factor > 1] = 1

    embedding_products = torch.sum(focal_embed * context_embed, dim=1)
    log_cooccurrences = torch.log(coocurrence_count)

    distance_expr = (embedding_products + focal_bias +
            context_bias + log_cooccurrences) ** 2

    single_losses = weight_factor * distance_expr
    mean_loss = torch.mean(single_losses)
    return mean_loss



Word Similarities

Nearest words to frog:
1. frogs
2. toad
3. litoria
4. leptodactylidae
5. rana
6. lizard
7. eleutherodactylus
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Linear Structures: Visualizations
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Linear Structures: Visualizations
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Linear Structures: Visualizations
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Analogy evaluation and hyperparameters
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Word Embedding Conclusion

• Developed a model that can translate meaningful relationships 
between word-word co-occurrence probabilities into linear 
relations in the word vector space.

• GloVe shows the connection between Count! work and Predict! 
work – appropriate scaling of counts gives the properties and 
performance of Predict! models
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Terminology Hell
• “Embedding”

• Embedding layer:   torch.nn.Embedding
• Linear layer: one hot index -> vectorized representation
• Basically, a big look up table

• Vector(ized) Representation
• Using an n-dim vector to represent a word. The vector.

• Hidden Representation; Hidden State
• The intermediate output of a neural network
• Neural LM: use this as the vectorized representation

• Word Embedding:
• The model/system/algorithm that generate a vectorized representation given a word.

• Word Embedding:
• The generated vectorized representation.
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The Corporate B.S. Generator

WSD!

https://www.atrixnet.com/bs-generator.html?bullshit=Word+embedding


Contextual vs. Global Word Embedding

• Global Word Embedding
• One vector representation word-type
• word2vec, GloVe

• Contextual Word Embedding
• One vector representation word-token
• RNN, LSTM, BERT, GPT…

32

Recall: Primitives: lexical categories or parts of 
speech. 
• Each word-type is a member of one or more.
• Each word-token is an instance of exactly one.
 



Context is important

• WSD:
• The lawyer approached the bar.
• Frank approached the bar.

• Anything beyond lexical level:
• Anaphora:

• Mary is a doctor. She works at the ____
• Anne is a farmer. She works at the ____

• Long distance agreement:
• The books that every student have read are …

• Tasks:
• What is the capital of Germany. It is ___

33

Bro conferencing at ACL 2019.



Also, we need more! What of larger semantic units?

• How can we know when larger units are similar in meaning?
• CTV News: Poilievre-led attempt to bring down Trudeau minority over 

carbon tax fails.
• CBC News: Liberals survive non-confidence vote on carbon tax with 

Bloc, NDP backing.
• The Beaverton: Co-worker that everyone hates surprised he can’t get 

colleagues to do what he wants.
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Language Modelling Task

• Final goal: predict/estimate the probability of a sequence

• Language Models:
• Estimate the likelihood of sequence of texts.
• Model that assigns probabilities to sequences of words.
• (All good definitions)

• Actual task:
• Predict the next word
• MLM

35

Probability( Some sentence over here. )



Likelihood, Probability of What?
• A really vague, abstract notion of how likely this sentence can 

appear in real-world, natural language discourse.
• Ultimate Goal: create a statistical model to describe some large 

quantity of corpora data, that ultimately capture the statistical 
structure of “Language.”

• Again, the practical definition of Language Model is:
• Estimate the likelihood of sequence of texts.
• Model that assigns probabilities to sequences of words.
      (both are fine)

• Likelihood is not: (related terms)
• Grammaticality, acceptability, syntactic well-formedness, “make sense,” 

well written …
• Colorless green ideas sleep furiously. -> Chomsky was terribly wrong.
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The Language Modelling Pipeline

• Collect large quantity of unstructured data
• Wikipedia articles, social media post, news articles…
• Famous open-source: WikiText-2/103 (100M Tokens), Dolma (3T tokens)

• Tokenization
• The Technische Universität Darmstadt, commonly known as TU Darmstadt, is a public 

research university in the city of Darmstadt, Germany.

• ['The', 'ĠTechn', 'ische', 'ĠUnivers', 'it', 'Ã¤', 't', 'ĠD', 'arm', 'stadt', ',', 
'Ġcommonly', 'Ġknown', 'Ġas', 'ĠT', 'U', 'ĠD', 'arm', 'stadt', ',', 'Ġis', 'Ġa', 
'Ġpublic', 'Ġresearch', 'Ġuniversity', 'Ġin', 'Ġthe', 'Ġcity', 'Ġof', 'ĠD', 'arm', 
'stadt', ',', 'ĠGermany', '.']

• Train the actual model by performing the language modelling task:
• Next Word Prediction, Masked Language Modelling,  …
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Language Modelling is NOT Unsupervised!

• Supervised vs. unsupervised learning.
• Supervised learning: labelled data.
• Unsupervised learning: unlabelled data, find structure in data itself.

• E.g., Clustering (e.g., K-Means) and Dimensionality Reduction (e.g., PCA, t-SNE).

• Language modelling tasks require direct supervision.
• Label: next token.

• Why many people call Language Modelling unsupervised?
• Data collection: unprocessed, unstructured raw text from the internet.
• Basically free!
• Indeed, we may not need to hire people to do any labelling or annotation.
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Language Modelling is NOT Unsupervised!

• Why many people call Language Modelling unsupervised?
• Data collection: unprocessed, unstructured raw text from the internet.
• Basically free!
• Indeed, we may not need to hire people to do any labelling or annotation.

• No longer the case now (2023, 2024ish)!
• The major LLM research labs (Qwen, Llama, OpenAI…) have used nearly 

all the data human ever created.
• Most commercial models need large amount of curated data.
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Tokenization and Tokenizers

• Character-level language modeling:
• Classifying Names with a Character-Level RNN
• Good with Chinese
• Other languages: inefficient use of data

• Tokenization: breaks down text into smaller units, often called tokens.
• text.split()

• The only difficulty: unknown token.
• Special <unk> token
 #longexposurephotography Rechtsschutzversicherungsgesellschaft
 Long exposure photography Rechts Schutz Versicherung s Gesellschaft
     legal protection insurance company
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Agglutinative language
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Çekoslovakyalılaştıramadıklarımızdanmışsınız

Çekoslovakya - Czechia(in ussr)
-(l)ı : from
-(l)aştır : to (let it) become
-(a)ma : not
-dı : past
-k:  1st pronoun(us)
-lar: plural
-(ı)mız: (from) us
-dan: out of /from
-mış : past (heard)
-sı(n)ız: you

“You are reportedly one of those that we could 
not make Czechoslovakian.”

Eiskaffee



Tokenization and Tokenizers

• Solution: Break a word down into subwords, or word pieces! 

• Slightly different encoding styles
colorless green ideas sleep furiously
• BERT: 'color', '##less', 'green', 'ideas', 'sleep', 'furiously’
• GPT/LLaMA: 'color', 'less', 'Ġgreen', 'Ġideas', 'Ġsleep', 'Ġfuriously’
• XLM: 'color', 'less</w>', 'green</w>', 'ideas</w>', 'sleep</w>', 'furiously</w>’

43



Byte Pair Encoding (BPE)

• Subword tokenization technique.
• Used for data compression and dealing with unknown words.

• Initialization:
• Vocabulary = set of all individual characters.
• V = {A, B, C, … a, b, c, … 1, 2, 3, … !, $, %, …}

• Repeat:
• Choose two symbols that appear as a pair most frequently (say “a” and “t”).
• Add new merged symbol (“at”).
• Replace each occurrence with the new symbol (“t”,”h”,”a”,”t” -> “t”,”h”,”at”).

• Until k merges have been done. Usually, we select a pre-defined vocabulary size (k). 
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Byte Pair Encoding (BPE)

Segments: Vocabulary:

5  l o w </w> </w>, d, e, I, l, n, o, r, s, t, w

2  l o w e s t </w>

6  n e w e r </w>

3  w i d e r </w>

2  n e w </w>

Most frequent symbol pair: er (9 times)

Segments: Vocabulary:

5  l o w </w> </w>, d, e, I, l, n, o, r, s, t, w, er

2  l o w e s t </w>

6  n e w er </w>

3  w i d er </w>

2  n e w </w>



Byte Pair Encoding (BPE)

Segments: Vocabulary:

5  l o w </w> </w>, d, e, I, l, n, o, r, s, t, w, er

2  l o w e s t </w>

6  n e w er </w>

3  w i d er </w>

2  n e w </w>

Most frequent symbol pair: er</w> (9 times)

Segments: Vocabulary:

5  l o w </w> </w>, d, e, I, l, n, o, r, s, t, w, er,

2  l o w e s t </w>  er</w>

6  n e w er</w>

3  w i d er</w>

2  n e w </w>



Byte Pair Encoding (BPE)

Segments: Vocabulary:

5  l o w </w> </w>, d, e, I, l, n, o, r, s, t, w, er,

2  l o w e s t </w>  er</w>

6  n e w er</w>

3  w i d er</w>

2  n e w </w>

Most frequent symbol pair: ne (8 times)

Segments: Vocabulary:

5  l o w </w> </w>, d, e, I, l, n, o, r, s, t, w, er,

2  l o w e s t </w>  er</w>, ne

6  ne w er</w>

3  w i d er</w>

2  ne w </w>



Limitations

• Doesn’t work well for other writing systems:
• Especially Arabic.

• Typos:
• participating -> 'Ġparticipating'
• partcipating -> 'Ġpart', 'c', 'ip', 'ating’

• “How many r’s does the word strawberry has?”
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Possible Future Directions

• Byte-based tokenization
• Byte Latent Transformer
• Pagnoni et al. (2025).

• Language (writing system) 
specific tokenization.
• E.g., Arabic: morphological 

methods.

• Modularity & model 
merging: combine models 
together. (More on this later)
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Training a Language Model

• Let’s take recurrent neural network (RNN) as an example.

50
We will run this quick, full details in DL4NLP.
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RNN hidden stateInput token representation
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class RNN(nn.Module):
  
  def __init__(self, input_size, hidden_size, output_size):
    # i: input token, h: hidden state, o: output 
    self.i2h = nn.Embedding(input_size, hidden_size)
    self.h2h = nn.Linear(hidden_size, hidden_size)
    self.h2o = nn.Linear(hidden_size, output_size) # output_size: number of labels

  def forward(self, x, hidden_state):
    x = self.i2h(x)
    hidden_state = self.h2h(hidden_state)
    hidden_state = torch.tanh(x + hidden_state)
    out = self.h2o(hidden_state)
    return out, hidden_state



Training Regime

• Model:
• Let’s take this RNN model as an example.

• Data:
• A corpus with sentences like: a tablespoon of apricot jam

• Input:
• a tablespoon of apricot

• Output label:
• jam
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Training Regime

• Model:
• Let’s take this RNN model as an example.

• Data:
• A corpus with sentences like: a tablespoon of apricot jam

• Input:
• a tablespoon of

• Output label:
• apricot
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Training Regime

• Model:
• Let’s take this RNN model as an example.

• Data:
• A corpus with sentences like: a tablespoon of apricot jam

• Input:
• a tablespoon

• Output label:
• of
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Training Regime

• Model:
• Let’s take this RNN model as an example.

• Data:
• A corpus with sentences like: a tablespoon of apricot jam

• Input:
• a

• Output label:
• tablespoon

56



Summary: How to train a neural LM

• Collect training data.
• Train the model:

• Take a tokenized sequence
• Input: t1, t2, t3, …, tn-1

• Output: logits (or probability) of tn.

• The LM is typically a neural model,
• trained as a typical neural model.
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