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How to Calculate P(sentence)

• Bayes’ theorem:
• P(A|B):  the probability of event A occurring given that B is true.
• P(B|A): the probability of event B occurring given that A is true.
• P(A) and P(B): probabilities of observing A and B respectively without any 

given conditions.

• Chain rule:
• TU Darmstadt’s graduation rate 50% (not real number).
• Acceptance rate: 50% (also not real number).
• Frank’s probability of graduating:



How to Calculate P(sentence)

• For a neural language model:
• Output: logits of every token in the vocab → 

prob. of every token in vocab.

RNN

Transformer
(decoder only, GPT)



How to Calculate P(sentence)

• For a neural language model:
• Output: logits of every token in the vocab → 

prob. of every token in vocab.

• What does each probability stand for?
• OK, is the model doing at that point?
• What does it have access to?

• W1, W2, W3, … Wi-1
• What does it output?

• The next token: Wi



How to Calculate P(sentence)
• Apply chain rule:

• Hmmm what should we do with x1?
• Solution: sentences always start 

with <BOS>.
• P(x1) = 1

• In practice:

P(w1|w0)

P(w2|w0:1)

P(w3|w0:2)

P(w4|w0:3)

P(w5|w0:4)



Transformers: Is Attention All We Need?

• Last lecture, we learned that attention dramatically improves the 
performance of recurrent neural networks.

• Today, we will take this one step further and ask Is Attention All We 
Need?

• Spoiler: Not Quite!
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Great Results with Transformers: SuperGLUE
• SuperGLUE is a suite of challenging NLP tasks, including QA, 

WSD, coreference resolution, and NLI.
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https://super.gluebenchmark.com/
https://super.gluebenchmark.com/


Great Results with Transformers:
Rise of Large Language Models!
• Today, Transformer-based models dominate LMSYS Chatbot 

Arena Leaderboard!
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Chiang et al. (2024). Chatbot Arena: An Open Platform for Evaluating LLMs by Human 
Preference. https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard  

https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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Even Easier!
• If you think fine-tuning BERT is too hard.
• Prompt ChatGPT and profit!
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import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer

if __name__ == '__main__':
  dataset = load_dataset("yelp_review_full")
  tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")

  def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)

  tokenized_datasets = dataset.map(tokenize_function, batched=True)
  model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)

  def acc(eval_pred):
    logits, labels = eval_pred
    predictions = torch.argmax(logits, dim=-1)
    return (predictions == labels).sum().item() / len(labels)

  training_args = TrainingArguments(output_dir="test_trainer", report_to=None)

  trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["test"],
    compute_metrics=acc,
  )

  trainer.train()



Transformers Even Show Promise Outside of NLP
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Climate Research
Nguyen et al. Scaling Transformers for 

Skillful and Reliable Medium-range 
Weather Forecasting. ICLR 2024.

Protein Folding
Jumper et al. (2021). aka AlphaFold2!

Image Classification
Dosovitskiy et al. (2020): Vision Transformer 
(ViT) outperforms ResNet-based baselines 

with substantially less compute.

Image Classification
Zhou et al. (2020): A Transformer-based 
compiler model (GO-one) speeds up a 

Transformer model!



Scaling Laws: Are Transformers All We Need? 

• With Transformers, language modeling performance improves smoothly as 
we increase model size, training data, and compute resources in tandem.

• This power-law relationship has been observed over multiple orders of 
magnitude with no sign of slowing!

• If we keep scaling up these models (with no change to the architecture), 
could they eventually match or exceed human-level performance?

11Kaplan et al. (2020) Scaling Laws for Neural Language Models 
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Kandpal et al. (2023) Large Language Models Struggle to Learn Long-Tail Knowledge

1021

1019

GPT-4: 1012

Metric: BLOOM (QA) accuracy 
on rare instances from Natural 
Questions (<100 relevant docs).

Human brain:
1010 ~1011 neurons



Three types of architectures

• Gets bidirectional context – can condition on future! 
• Good word embeddings.
• MLM, BERT.

• Next word prediction.
• Easy to train. Abundant amount of data.
• Nice to generate from; can’t condition on future 

words.

• Good parts of decoders and encoders? 
• What’s the best way to pretrain them?
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Pretraining encoder-decoders:
What pretraining objective to use?

• What Raffel et al. (2018) found to work best 
was span corruption. Their model: T5.

• Replace different-length spans from the input 
with unique placeholders; decode out the 
spans that were removed! 

• This is implemented in text preprocessing: it’s 
still an objective that looks like language 
modeling at the decoder side.
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Pretraining encoder-decoders:
What pretraining objective to use?
• Raffel et al., (2018) found encoder-decoders to work better than decoders for their tasks, and 

span corruption (denoising) to work better than language modeling.
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One surprising finding
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One surprising finding
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One surprising finding
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One surprising finding
A fascinating property of T5:
• It can be finetuned to answer a wide 

range of questions, retrieving 
knowledge from its parameters.

• With natural language!
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One surprising finding
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Bad at Classifications!
• GPT-2’s approach

• Finetune it’s “word embeddings”
• hidden = self.h2h(hidden)

• Blown away by BERT!
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Decoder Encoder

The Progression of Transformer Models

Encoder-Decoder



Decoder Encoder

The Progression of Transformer Models

Encoder-Decoder

Now – since GPT3!



GPT-2: Good at Generation

24

How I (sort of) interviewed an artificial intelligence. The Economist. Dec 2019.
https://medium.economist.com/how-i-sort-of-interviewed-an-artificial-intelligence-2a9c069a1680 
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GPT-3:
No More Finetuning!
• Encoder models

• Better than decoder models
at every aspect

• … except in generation

• When humans solve problems:
• See a small number of demonstrations and 

descriptions
• These demonstrations and descriptions are in 

natural language
• Approach every task through generation!

25

OpenAI GPT-3 Text Embeddings - Really a new 
state-of-the-art in dense text embeddings? link

https://medium.com/@nils_reimers/openai-gpt-3-text-embeddings-really-a-new-state-of-the-art-in-dense-text-embeddings-6571fe3ec9d9


GPT-3:
No More Finetuning!
• Encoder models

• Better than decoder models
at every aspect

• … except in generation

• When humans solve problems:
• See a small number of demonstrations and 

descriptions
• These demonstrations and descriptions are in 

natural language
• Approach every task through generation!
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OpenAI GPT-3 Text Embeddings - Really a new 
state-of-the-art in dense text embeddings? link

https://medium.com/@nils_reimers/openai-gpt-3-text-embeddings-really-a-new-state-of-the-art-in-dense-text-embeddings-6571fe3ec9d9


GPT-3’s Response: No More Finetuning!

• Double down on scaling model size.
• Before GPT-3, the largest T5 model had 11 billion parameters.
• GPT-3 has 175 billion parameters.

• Stop building classifiers!
• In context learning
• Post training with:

• Instruction fine-tuning
• …
• (We will talk about these later)

27



GPT-3’s Response: No More Finetuning!

• Double down on scaling model size.
• Before GPT-3, the largest T5 model had 11 billion parameters.
• GPT-3 has 175 billion parameters.

• Stop building classifiers!
• In context learning
• Post training with:

• Instruction fine-tuning
• …
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Why scale? Scaling laws

• Empirical observation: scaling up models leads to reliable gains in perplexity
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Scaling can help identify model size
data tradeoffs 

• Modern observation: reality -- train a big model that’s not fully converged.
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Scaling laws for many other interesting 
architecture decisions 

• Predictable scaling helps us make intelligent decisions about architectures 
etc.
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Scaling Efficiency:
how do we best use our compute
• GPT-3 was 175B parameters and trained on 300B tokens of text.
• Roughly, the cost of training a large transformer scales as 

parameters*tokens
• Did OpenAI strike the right parameter-token data to get the best model?

 No!
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GPT-3’s Response: No More Finetuning!

• Double down on scaling model size.
• Before GPT-3, the largest T5 model had 11 billion parameters.
• GPT-3 has 175 billion parameters.

• Stop building classifiers!
• In context learning
• Post training with:

• Instruction fine-tuning
• …
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In-context Learning (ICL): A New Paradigm
• If we don’t do classification, what should we do instead?
• In-context learning:
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GPT-3: In context learning +
  … prompting

• The notion of “prompting” begins to 
emerge …

• Neural network so far: classifier
• GPT-3: Work with the model with natural 

language to guide it to a solution.
• (more next lecture)
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What can we learn from reconstructing the input?

36

TU Darmstadt is located in __________, Germany.



What can we learn from reconstructing the input?

37

I put ___ fork down on the table.



What can we learn from reconstructing the input?
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I put ___ fork down on the table.



What can we learn from reconstructing the input?

39

The woman walked across the street,
checking for traffic over ___ shoulder.



What can we learn from reconstructing the input?
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I went to the ocean to see the fish, turtles, seals, and _____. 



What can we learn from reconstructing the input?

41

Overall, the value I got from the two hours watching
it was the sum total of the popcorn and the drink.

The movie was ___.



What can we learn from reconstructing the input?
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Iroh went into the kitchen to make some tea.
Standing next to Iroh, Zuko pondered his destiny.

Zuko left the ______. 



What can we learn from reconstructing the input?
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I was thinking about the sequence that goes
1, 1, 2, 3, 5, 8, 13, 21, ____



What can we learn from reconstructing the input?
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Canadian singer Avril Lavigne died in 2003, shortly after the 
release of her debut album, Let Go (2002), and was 

replaced by a body double named Melissa Vandella.



What kinds of things does pretraining teach?
• There’s increasing evidence that pretrained models learn a wide variety 

of things about the statistical properties of language. 
• TU Darmstadt is located in __________, Germany. [Trivia, Facts]
• I put ___ fork down on the table. [syntax]
• The woman walked across the street, checking for traffic over ___ shoulder. 

[coreference/anaphora]
• I went to the ocean to see the fish, turtles, seals, and _____. [lexical 

semantics/topic]
• Overall, the value I got from the two hours watching it was the sum total of the 

popcorn and the drink. The movie was ___. [sentiment]
• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko 

pondered his destiny. Zuko left the ______. [some reasoning – this is harder]
• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____ [some 

basic arithmetic; they don’t learn the Fibonacci sequence]

• Models also learn – and can exacerbate racism, sexism, all manner of 
bad biases.
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Sometimes it also memorizes copyrighted material
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Let’s Draw Super Mario
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Other types of things we don’t want

• Membership inference lets you 
recover parts of the training 
data.

• Sometimes this training data is 
semi-private material from the 
web (addresses, emails)

• It learns the prejudices and 
biases of human beings who 
write online.
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Bias

51

word2vec: king - man + woman = queen



Bias
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word2vec: king - man + woman = queen
   programmer - man + woman = homemaker



Bias
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“Game Over for Scaling Laws”

https://www.youtube.com/watch?v=aR20FWCCjAs 

https://www.youtube.com/watch?v=aR20FWCCjAs


So, what’s next?



Test-time 
Scaling &
Post-training

Pre-
training
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