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Overview

• Introduction
• Basics: LLM Generation
• Prompting techniques:

• ICL
• CoT
• Self-Consistency
• Least-to-Most
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LLM Architecture Development Progress
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LLaMA 3.1 (2024)
GPT-4 (2024)

…

Vaswani et al. (2017)
Attention is All You Need

7 Years
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class TransformerBlock(nn.Module):
  def __init__(self, layer_id: int, args: ModelArgs):
    super().__init__()
    self.n_heads = args.n_heads
    self.dim = args.dim
    self.head_dim = args.dim // args.n_heads
    self.attention = Attention(args)
    self.feed_forward = FeedForward(
      dim=args.dim,
      hidden_dim=4 * args.dim,
      multiple_of=args.multiple_of,
      ffn_dim_multiplier=args.ffn_dim_multiplier,
    )
    self.layer_id = layer_id
    self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
    self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)

  def forward(
    self,
    x: torch.Tensor,
    start_pos: int,
    freqs_cis: torch.Tensor,
    mask: Optional[torch.Tensor],
  ):
    h = x + self.attention(self.attention_norm(x), start_pos, freqs_cis, mask)
    out = h + self.feed_forward(self.ffn_norm(h))
    return out

https://github.com/meta-llama/
llama3/blob/main/llama/model.py 

https://github.com/
https://github.com/meta-llama/llama3/blob/main/llama/model.py
https://github.com/meta-llama/llama3/blob/main/llama/model.py
https://github.com/meta-llama/llama3/blob/main/llama/model.py
https://github.com/meta-llama/llama3/blob/main/llama/model.py


5

Architectural Changes Post-training



Zero-shot learning

• One key emergent ability in GPT-2 is zero-shot learning: the ability to do 
many tasks with no examples, and no gradient updates, by simply:

• Specifying the right sequence prediction problem (e.g. question answering):
Passage: Tom Brady... Q: Where was Tom Brady born? A: ...

• Comparing probabilities of sequences:
The cat couldn’t fit into the hat because it was too big. 
Does it = the cat or the hat? 
≡ Is P(...because the cat was too big) >=
     P(...because the hat was too big)?
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Zero-shot learning
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• You can get interesting zero-shot behavior if you’re creative 
enough with how you specify your task!

• Summarization on CNN/DailyMail dataset (See et al., 2017).

SAN FRANCISCO, California (CNN) -- A 
magnitude 4.2 earthquake shook the San 
Francisco ... overturn unstable objects. 
TL;DR:



Generation

• Steps:
• After processing the input text (prompt)
• Predict the next token (choose the token with the highest prob.).
• Choose one token
• Repeat

• This is referred to as greedy decoding
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Temperature

• Remember softmax?

• We can add a rescaling hyperparameter (temperature τ)
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Temperature

• τ = 1: no rescaling.
• τ > 1: distribution flattens.

• Lower-probability tokens get relatively more mass.
• The model becomes more “creative.”
• More diversity, but higher risk of errors or incoherence.
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Problem with Greedy Decoding

I can eat

glass objects

apple pies very much

0.8

0.79 0.9 0.9

0.1

0.9
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Beam Search: top-K Greedy
• Core idea: track the K top choices (most probable) of 

tokens at each step of decoding.
• K is also called the “beam width” or “beam size.”

• Where, 5 ≤ 𝐾 ≤ 10 usually in practice.
• Recall the score of a hypothesis (x1, … , xT)

is its log probability:

• Beam search does not guarantee finding
the optimal solution.

• However, much more efficient and practical than 
exhaustive search.
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13https://www.codecademy.com/resources/docs/ai/search-algorithms/beam-search 

https://www.codecademy.com/resources/docs/ai/search-algorithms/beam-search
https://www.codecademy.com/resources/docs/ai/search-algorithms/beam-search
https://www.codecademy.com/resources/docs/ai/search-algorithms/beam-search
https://www.codecademy.com/resources/docs/ai/search-algorithms/beam-search
https://www.codecademy.com/resources/docs/ai/search-algorithms/beam-search
https://www.codecademy.com/resources/docs/ai/search-algorithms/beam-search
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S to G, beam size = 2.
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“Emergent” few-shot learning 
• Specify a task by simply prepending examples of the task before your example.
• Also called in-context learning, to stress that no gradient updates are performed 

when learning a new task.

21



Side Note: On “Emergence”
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23Anderson (1972).

Steinhardt (2022).



Steinhardt and Wei:

“Emergence is when 
quantitative changes in 

a system result in 
qualitative changes in 

behavior.”
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Here, as in natural science, is shown the correctness of 
the law discovered by Hegel (in his “Logic”), that merely 
quantitative differences beyond a certain point pass into 
qualitative changes.

Capital. 1867. Karl Marx. 

citing
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28Anderson. More Is Different. 1972. Science.



Recommended Sources

• Batterman. The Devil in the Details: Asymptotic Reasoning in 
Explanation, Reduction, and Emergence.

• The Stanford Encyclopedia of Philosophy.
https://plato.stanford.edu/
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“Emergent” few-shot learning 
• Specify a task by simply prepending examples of the task before your example.
• Also called in-context learning, to stress that no gradient updates are performed 

when learning a new task.
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Few-shot learning 
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Few-shot learning 
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Few-shot learning 
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34Wei et al. (2022) Emergent Abilities of Large Language Models 



35https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities 

https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities
https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities
https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities
https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities
https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities
https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities
https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities
https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities
https://www.jasonwei.net/blog/common-arguments-regarding-emergent-abilities


Limits of prompting for harder tasks?

• Some tasks seem too hard for even large LMs to learn through 
prompting alone.

• Especially tasks involving richer, multi-step reasoning.

19583 + 29534 = 49117

98394 + 49384 = 147778

29382 + 12347 = 41729

93847 + 39299 = ?
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Improvement: change the prompt! 



Chain-of-thought

37[Wei et al., 2022; also see Nye et al., 2021]



Chain-of-thought

38[Wei et al., 2022; also see Nye et al., 2021]



Chain-of-thought

39[Wei et al., 2022; also see Nye et al., 2021]

Do we even need examples of 
reasoning?
Can we just ask the model to 
reason through things?



Zero-shot CoT prompting 
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Greatly outperforms 
zero-shot!

Manual CoT
still better

Kojima et al. (2022) Large Language Models are Zero-Shot Reasoners



CoT with “Self-consistency”
• Replace greedy decoding with an ensemble of samples…

• Main idea: correct reasoning processes have greater agreement than incorrect processes.
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Wang et al. (2023) Self-Consistency Improves Chain of Thought Reasoning in Language Models.



CoT with “Self-consistency”
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Out-performs 
regular CoT on a 
variety of 
benchmarks

Self-consistency is 
doing more than 
simple ensembling



Least-to-Most prompting
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Least-to-Most prompting
• Idea: decompose a problem into smaller ones.

44
Zhou et al. (2023) Least-to-Most Prompting Enables Complex Reasoning in Large Language Models

.



Least-to-Most prompting
• Idea: decompose a problem into smaller ones.
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Least-to-Most prompting for Math Reasoning
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Standard CoT prompting

Least-to-most prompting 



Least-to-Most prompting for Math Reasoning
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Generalizes to more #steps than 
in-context example!

But with enough prompt 
engineering, CoT ≈ Least-to-Most



Solution #3: Interleaving decomposition
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Solution #3: Interleaving decomposition
SelfAsk

49Press et al. (2023) Measuring and Narrowing the Compositionality Gap in Language Models.



Summary

• Zero-shot Prompting
• In-context Learning
• Chain-of-thought
• Self-consistency
• Least-to-Most
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