
Introduction to LLM
Practice Session 4

Word Representation I



Topics Covered Before LLMs

● LLMs implicitly learn classic NLP tasks (POS, parsing, disambiguation)
○ We teach them first to show what LLMs do implicitly, e.g., morphology, handling inflection, OOV.
○ These topics show what’s happening under the hood.

● You learn how text becomes numbers and how we search and compare with it, key ideas 
behind modern LLM systems.

● Seeing pre-LLM methods teaches trade-offs and when simple tools are enough.

● Not every problem needs an LLM, always start with a baseline.
○ For small, well-defined, labeled task LLMs will be an overkill (e.g., 2-layer NN for tweet sentiment can hit ≳ 

90%).

● Evaluate fairly (simple models vs. LLM) to justify cost, latency, and privacy impacts.

● Takeaway: Understand the classics, then choose the right tool based on task complexity.
○ Use LLMs only when gains justify cost or complexity.



Clarifying Lesk Variants 

● Original Lesk (1986) 
○ Algorithm explained in Lecture
○ Compare glosses of all candidate senses with glosses of surrounding words’ senses; score by 

overlap between definitions. 
○ (definitions ↔ definitions overlap)

● Simplified Lesk (Kilgarriff & Rosenzweig (2000)):
○ Algorithm explained in PS & HW
○ Compare sentence context directly to each sense’s gloss. 
○ (definitions ↔ sentence context overlap)

● Simplified Lesk is the one you’ll see used most often in practice (as a baseline 
and in variants):

○ Mainly because it’s far cheaper computationally and tends to work better than the original on 
standard evaluations.



Difficulty of Exercise and HW

● It’s normal to feel a bit overwhelmed in PS: moving from theory to code isn’t straightforward.

● There’s a natural gap: you may understand the lecture but struggle in implementation
○ PS is designed to bridge that gap.

● This tries to mirror your first job: turning ideas/specs into working, efficient code for your problem.

● PS focus: review the concepts in lecture and see how can we implement a minimal working version.
○ After that we show you how you can use reliable libraries to avoid reinventing the wheel.

● Important that you have programming basics + ML foundations (we tried to review that in PS1).
○ We recommended external resources on Moodle, e.g. 3Blue1Brown YT channel for visual intuition.

● It’s okay if you don’t understand everything live.
○ Ideally you understand the main idea and purpose of the code, then you can go over the details step by step yourself.



Timeline

PS1

Python & ML 
Foundations

- Train/Dev/Test
- Hyperparameters 

- Loss Fn.

CL/NLP Basics

- Morphology
- Syntax

- PoS
- Parsing

- Semantics
- Lemma

- Ambiguity

PS2

Word 
Representation I:

- Basics
- Evaluation

- Inverted Index
- TF-IDF
- BM25
- LSA

- nDCG

PS3

Word 
Representation II:

- Statistical Methods
- Cosine Similarity

- Word2Vec
- CBOW & Skip-gram

- GloVe

PS4

Dense Retrieval & 
Neural Reranking

- Dense & Hybrid
- S-BERT 

- Cross-Encoders

PS11

Question 
Answering & RAG

- Query Decomposition
- Metadata Filtering

- Self-RAG

PS12



PS3: Colab Notebook (Available on Moodle)

● https://colab.research.google.com/drive/1IdxJCu6HOsoOJUXwnCJ6-jrF-ypjGL9G

https://colab.research.google.com/drive/1IdxJCu6HOsoOJUXwnCJ6-jrF-ypjGL9G

