
Introduction to LLM
Practice Session 13

Rerankers, RAG, and Agents



High-level Retriever + Reranker Pipeline

● First stage retrievers can be:-
○ Dense retrievers, e.g., BERT-DOT
○ Sparse retrievers, e.g., BM25
○ Hybrid retrievers (combination of both)



Reranker Main Idea (Interaction Modelling)

● Rerankers model the interaction between the query and the document

○ Dense retrieval treat the query encoding and document encoding separately (no interaction)

○ Reranker learns to generate one encoding for both query and document together (interaction)
■ This one encoding for both is now used to generate one scalar relevance score



Bi-encoder (Dense Retriever) vs Cross-encoder (Reranker)

● Cross-encoders takes both the query (sentence A) and the document (sentence B) simultaneously

○ It learns a classifier (simple NN) to generate one output (score) between 0 and 1

● Source: Article Link

https://www.sbert.net/examples/cross_encoder/applications/README.html


Bi-encoder (BERT-DOT) vs Cross-encoder (BERT-CAT)

● Rerankers (Cross-encoder) is slower as it must be done online (at query time)

○ It’s better than bi-encoders in detecting relevance between query and document

○ It acts as a verifier that checks only the top k (e.g., 100) documents from bi-encoders and re-rerank them



Retrieval-Augmented Generation (RAG)

● Step 1: retrieve top N documents using some Retriever pipeline.

● Step 2: write the query with the top N documents (context) for the LLM.

● Source: Article Link

https://medium.com/@sahin.samia/what-is-retrieval-augmented-generation-rag-in-llm-and-how-it-works-a8c79e35a172


RAG (Interleaving Decomposition) for Distraction Mitigation



Tool Use with LLMs

● LLMs are fine-tuned on numerous tool usage examples (mostly in JSON)

● Source 1: Article Link, Source 2: Article Link Tool Schema (can be simple string)

https://www.analyticsvidhya.com/blog/2024/08/tool-calling-in-llms/
https://amitness.com/posts/function-calling-schema/


ReAct: Synergizing Reasoning and Acting in Language 
Models

● LLMs are strong at reasoning, but weak at exact arithmetic calculations, or answering based on 
up-to-date information (training data has a cut-off date) -> Solution: use both thinking + actions (tools)

● Source 1: Article Link

https://react-lm.github.io/


Timeline

PS1

Python & ML 
Foundations

- Train/Dev/Test
- Hyperparameters 

- Loss Fn.

CL/NLP Basics

- Morphology
- Syntax

- PoS
- Parsing

- Semantics
- Lemma

- Ambiguity

PS2

Word 
Representation I:

- Basics
- Evaluation

- Inverted Index
- TF-IDF
- BM25
- LSA

- nDCG

PS3

Word 
Representation II:

- Statistical Methods
- Cosine Similarity

- Word2Vec
- CBOW & Skip-gram

- GloVe

PS4

Dense Retrieval 
QA, and ANN

- Bi-encoders
- BERT-DOT model

- Hard Negatives
- Margin Loss Training

- Span QA
- Indexing Comparison

PS11

Rerankers, RAG, 
and Agents

- BERT-CAT
- RAG
- Agent

- Tool Use
- ReAct

PS12



PS13: Colab Notebook (Available on Moodle)

● https://colab.research.google.com/drive/1CQHvt18Y_tujmPTNGeLxLrgzmAxijyvM

● Before running any cell, please choose T4 GPU by clicking on "Runtime" in the main 
menu then on "Change runtime type", and disconnect from it when you finish using it.

https://colab.research.google.com/drive/1CQHvt18Y_tujmPTNGeLxLrgzmAxijyvM

